The data is a fisheye photo above the interception barrel of the Picea crassifolia plot in the Tianlaochi small watershed of Qilian Mountain. The plot has a latitude and longitude of 38.44N, 99.91E, and an altitude of 2793m. Photo DSC_0008——DSC_0097 corresponds to Fisheye photos above interception barrels 1 to 90 respectively. The camera is directly above the interception barrel and the lens is 1m above the ground. It is used to estimate the cover or LAI of Qinghai spruce forest, and the pictures are processed with Gap Light Analyzer software.
ZHAO Chuanyan, MA Wenying
China's administrative regions are basically divided into three levels: provinces (autonomous regions, municipalities directly under the central government), counties (autonomous counties, cities), townships (nationality townships, towns). In order to meet the needs of user statistics and cartography, we have published 1:1 million national administrative division data sets according to the national basic geographic information center. The administrative division data of Heihe River Basin were prepared. This data reflects the current situation of administrative divisions in Heihe River basin around 2008, including the information of provincial, regional and county-level administrative divisions. Its main attributes (such as area, code of administrative divisions, province (autonomous region), city (region, autonomous prefecture)) come from China's administrative divisions published in 2008.
WU Lizong
At the end of September and the beginning of October, 2011, a year-end ecological survey was carried out in heihe river basin for plants of different desert types to stop growing. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.
SU Peixi
In mid-july 2011, photosynthetic organs (leaves or assimilating branches) of typical desert plants were collected and brought back to the laboratory in a liquid nitrogen tank for determination. The analysis indexes mainly include soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.
SU Peixi
This data set includes a monthly composite of 30 m × 30 m surface vegetation coverage products in the Qilian Mountain Area in 2019. In this paper, the maximum value composition (MVC) method is used to synthesize monthly NDVI products and calculate FVC by using the reflectance data of Landsat 8 and sentinel 2 red and near infrared channels. The data is monthly synthesized by Google Earth engine cloud platform, and the index is calculated by the model. The missing pixels are interpolated with good quality, which can be used in environmental change monitoring and other fields.
SUN Ziyong, CHANG Qixin
This data includes the accessibility of 15 kinds of public facilities and services, such as roads and schools, in the communities of 1280 households at domestic and abroad, as well as the farmers' satisfaction with these public facilities and public services by comparing that with 3 years ago and current status with neighboring village. This data is used to support the analysis of the material capital part of sustainable livelihood. The data was collected by the research group through field survey in 2019. Before collecting the data, the research group and invited experts conducted a pretest and improved the survey questionnaire; Before the formal investigation, the members participating in the data collection were strictly trained; In the formal survey, each questionnaire is checked three times before it is filed. This data is of great value for understanding the physical capital accessibility and satisfaction of rural households in environment-economic fragile areas, and is an important supplement to national and macro data.
XIE Yaowen
This data is used to restore the distribution of ancient settlements in Heihe River Basin from the Ming Dynasty to the Republic of China. The reconstruction is based on the re publication of ganzhenzhi, the re construction of new records of Suzhou and Ganzhou Prefecture and the county records of the Republic of China. At the same time, the spatial distribution data of ancient settlements in Heihe River Basin is reconstructed by combining the topographic map and remote sensing image in the 1960s. The data set includes spatial distribution data of ancient settlements in Ming, Qing and Republic of China.
XIE Yaowen
A small lysimeter was made by ourselves, which simulated the natural conditions and selected typical desert plants as the object to study the water consumption and its law. Repeat 3 times for each plant.
SU Peixi
In mid July 2011, the photosynthetic organs (leaf or assimilating branches) of typical desert plants were collected and determined by laboratory. The indicators include: leaf water potential, total leaf water content, relative water content, dry weight water content, leaf dry matter content, specific leaf area, specific leaf volume, free water, bound water, etc.
SU Peixi
This data is the water level data of 2011-2012, which is observed by water level recorder. From July 14 to September 9, 2011, the observation was recordered every five minutes; from June 4 to July 10, 2012, the observation was recordered every ten minutes. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. The data shall be opened with HOBO software.
ZHAO Chuanyan, MA Wenying
From May 25, 2012 to September 8, 2012, observation was made at 3100m grassland weather station in Tianlaochi watershed of Qilian mountain. The instrument was a 20cm evaporating dish, a round metal basin with a diameter of 20 cm and a height of 10 cm. The mouth of the basin was blade-shaped. In order to prevent birds and animals from drinking water, a trumpet-shaped wire mesh ring was sleeved on the upper part of the mouth. During measurement, the instrument shall be placed on the shelf with the mouth 70cm from the ground, and quantitative clear water shall be put in every day. After 24 hours, the remaining water quantity shall be measured by the dosage cup, and the reduced water quantity shall be the evaporation capacity. Data are daily evaporation from May 25, 2012 to September 8, 2012.
ZHAO Chuanyan, MA Wenying
This data includes three parts of data, namely shrub water holding experiment, shrub interception experiment and shrub transpiration experiment data. Shrub water holding experiment: select the two shrub types of Caragana jubata and Potentilla fruticosa, respectively pick the branches and leaves of the two vegetation types, weigh their fresh weight, carry out water holding experiment, measure the saturated weight of branches and leaves, dry weight of branches and leaves, dry weight of branches and leaves after completion, and finally obtain the data of branches, leaves and total water holding capacity. Shrub interception experiment: two shrubs, Caragana jubata and Potentilla fruticosa, were also selected and investigated. 30 rain-bearing cups were respectively arranged under the two shrubs. after each rainfall, penetration rainfall was measured and observed from June 1, 2012 to September 10, 2012. Shrub Transpiration Experiment: Potentilla fruticosa on July 14, Caragana jubata on August 5, Salix gilashanica on August 15, 2012. The measurement is made every hour according to the daily weather conditions.
ZHAO Chuanyan, MA Wenying
Five different altitude zones were selected for this test. Their altitude, latitude and longitude are 3650 meters above sea level, latitude and longitude 99°55'24 E, 38°24'60" N; altitude of 3550 meters, latitude and longitude 99°55'28 E, 38°25'11" N; 3450 meters above sea level, longitude and latitude 99°55'38 E, 38°25'68" N; 3350 meters above sea level, longitude and latitude 99°55'37 E, 38°25'11" N; 3050 meters above sea level, longitude and latitude 99°55'42 E, 38°25'54" N. From May 31 to August 31, 2011, in the case of natural rainfall, the total rainfall was measured once every ten days using a rain gauge on five samples. To compare the difference in rainfall at different altitudes, it is necessary to combine the rainfall data observed by the project at the grassland weather station in 2011.
ZHAO Chuanyan, MA Wenying
China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.The main contents include: China 1:100,000 land use data;China 1:100,000 land use graph data and attribute data. The data was directly clipped from China's 1:100,000 land-use data.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data). Land use classification attributes: The first class type and the second class type attributes encode the spatial distribution position Cultivated paddy field 113 is mainly distributed in alluvial plain, basin and valley Cultivated paddy field 112 distributed in hilly valley narrow valley platform or beach (with irrigation conditions) Cultivated paddy field 111 is mainly distributed in mountain valley narrow valley platform or beach (with better irrigation conditions) Arable land 124 is mainly distributed in mountainous areas, the slope is generally more than 25 degrees (belongs to the steep slope hanging land), should be returned to forest. Cultivated dry land 123 is mainly distributed in basins, piedmont belts, river alluvial, diluvial or lacustrine plains (water shortage and poor irrigation conditions). Cultivated dry land 122 is mainly distributed in hilly areas (shaanxi, gan, ning, qing).In general, the plot is distributed on gentle slopes and x and sockets of hills. Arable land 121 is mainly distributed in the mountainous area, with an elevation of 4000 meters below the slope (gentle slope, mountainside, steep slope platform, etc.) and mountain front belt. Woodlands have woodlands (trees) 21 mainly distributed in the mountains (below 4000 meters above sea level) or in the slope, valley two slopes, mountain tops, plains.In qinghai nanshan, qilian mountains are. Woodland shrub 22 is mainly distributed in the higher mountain areas (below 4500 m), most of the distribution of hillside and valley and sand. Forest dredging 23 mainly distributed in the mountains, hills, plains and sandy land, gobi (soil, gravel) edge. Other woodlands 24 are mainly distributed in the oasis ridge, river, roadside and rural residential areas around. Grassland 31 is generally distributed in mountainous areas (gentle slopes), hills (steep slopes) and interriver beaches, gobi desert, sandy hills, etc. The covered grassland 32 is mainly distributed in dry places (next door low-lying land and sandy hills, etc.). Grassland low cover grassland 33 mainly grows in drier places (loess hills and sandy edges). The river channel 41 is mainly distributed in the plain, the cultivated land between the rivers and the valleys in the mountains. Water lakes are mainly distributed in low-lying areas. The reservoirs are mainly distributed in the intermountain lowlands and intersandy hills in qinghai province. Water area glaciers and permanent snow 44 mainly distributed in the plain, the valley between the river, there are surrounding residents and arable land. Waters and beaches are mainly distributed on the top of (over 4000) mountains.
WANG Jianhua, LIU Jiyuan
The dataset of the automatic meteorological observations (2008-2009) was obtained at the Pailugou grassland station (E100°17'/N38°34', 2731m) in the Dayekou watershed, Zhangye city, Gansu province. The items included multilayer (1.5m and 3m) of the air temperature and air humidity, the wind speed (2.2m and 3.7m) and direction, the air pressure, precipitation, the global radiation, the net radiation, co2 (2.8m and 3.5m), the multilayer soil temperature (10cm, 20cm, 40cm, 60cm, 120cm and 160cm), soil moisture (10cm, 20cm, 40cm, 60cm, 120cm and 160cm), and soil heat flux (5cm, 10cm and 15cm). For more details, please refer to Readme file.
HUANG Guanghui, WU Lizong, Qu Yonghua, LI Hongxing, ZHOU Hongmin, Zhang Zhihui
The data is the monthly average spatial distribution of frozen soil in Heihe River Basin from 2000 to 2009. Based on the grid temperature data of Heihe River Basin from 2000 to 2009, the freezing and thawing state of surface soil is divided into three kinds: unfreezing state, incomplete freezing state and complete freezing state. Complete freezing means that the soil is completely frozen in the whole month. Incomplete freezing refers to soil freezing days ≤ 30 days but ≥ 1 day in a month, and the soil has freeze-thaw cycle. Non freezing means that the soil will not freeze this month. The data is in the form of grid, which can be opened in ArcGIS. 1 represents unfrozen state, 2 represents unfrozen state, 3 represents fully frozen state
PENG Xiaoqing, ZHANG Tingjun
This data includes the basic terrain data, soil data, meteorological data, land use / land cover data, etc. needed for SWAT model operation. All maps and relevant point coordinates (meteorological station, hydrological station) adopt the coordinate system of Gauss Kruger projection which is consistent with the basic topographic map of our country. Data content includes: a) The basic topographic data include DEM and river network. The size of DEM grid is 50 * 50m, and the drainage network is manually digitized from 1:100000 topographic map. b) Soil data: including soil physics, soil chemistry and spatial distribution of soil types. The scale of digital soil map is 1:1 million, which is converted into grid format of ESRI, with grid size of 50 * 50m. Each soil profile can be divided into up to 10 layers. The sampling index of soil texture required by the model adopts the American Standard. The parameters are from the second National Soil Census data and related literature. c) Meteorological data: (1) Temperature: the data of daily maximum temperature, daily minimum temperature, wind speed and relative humidity are from the daily observation data of Qilian, Shandan, tole, yeniugou and Zhangye meteorological stations in and around the basin, with the period from 1999 to 2001. (2) Precipitation: the rainfall data comes from five hydrological stations in and around the basin, i.e. OBO (1990-1996), Sunan (1990-2000), Qilian (1990-2000), Yingluoxia (1990-2000), zamashk (1990-2000), Shandan (1999-2001), tole (1999-2001), yeniugou (1999-2001), Zhangye (1999-2001) and Qilian County (1999-2001) Observation data. (3) Wind speed and relative humidity: wind speed and relative humidity come from the daily observation data of 5 meteorological stations in Shandan, tole, yeniugou, Zhangye and Qilian county. The period is from 1999 to 2001. (4) Solar radiation: solar radiation has no corresponding observation data and is generated by model simulation. d) Land use / land cover: 1995 land use data, scale 1:100000. Convert it to grid format of ESRI, with grid size of 50 * 50m. e) Meteorological data simulation tool (weather generator) database: the weather data simulation tool of SWAT model can simulate and calculate the daily meteorological input data required by the model operation according to the monthly statistical data for many years without the actual daily observation data, and can also carry out the interpolation of incomplete observation data. The meteorological data are from the surrounding meteorological stations.
NAN Zhuotong
1. Data overview: this data is the blue and green water data of Heihe River Basin simulated by SWAT model; 2. Data content: data mainly includes blue-green water and green water coefficient of the whole basin and each sub Basin; 3. Spatial and temporal scope: the data time is from 1975 to 2004, and the spatial scope includes 34 sub basins and the whole Heihe River Basin; 4. Data file: the relevant data is placed in the Swat folder, including the sub_basin folder (sub basin distribution map), "blue and green water of the whole Heihe River Basin" folder and "blue and green water of each hydrological response unit of the Heihe River Basin" folder.
LIU Junguo
Data overview: This set of data mainly includes perennial River, seasonal river, river trunk, surface main channel, surface branch channel and other water system conditions in the Heihe River Basin. The data base year is 2009. Data preparation process: obtained from 1:100000 topographic map and 2009 TM remote sensing image digitization. Data content description: the data mainly has three important attributes, namely, grade, GB and name. The river classification is based on the Strahler classification method, and the final level of the main stream reaches seven levels. River coding is based on the national basic geographic information element dictionary. The standard of basic geographic information element data dictionary is adopted.
National Basic Geographic Information Center
The data are from 2011 to 2012. A 30m×30m Picea crassifolia canopy interception sample plot was set up in the Picea crassifolia sample plot at an altitude of 2800m m. A siphon raingauge model DSJ2 (Tianjin Meteorological Instrument Factory) was set up on the open land of the river about 50m from the sample plot to observe the rainfall outside the forest and its characteristics. Penetrating rain in the forest adopts a combination of manual observation and automatic observation. Automatic observation is mainly realized through a penetrating rain collection system arranged in the interception sample plot, which consists of a water collecting tank and an automatic recorder. Two 400cm×20cm water collecting tanks are connected with DSJ2 siphon rain gauge, and the change characteristics of penetrating rain under the forest are continuously recorded by an automatic recorder. Due to the spatial variability of the canopy structure of Picea crassifolia forest in the sample plot, a standard rainfall tube for manual observation is also arranged in the sample plot to observe the penetrating rain in the forest. Ninety rainfall tubes with a diameter of 20cm are arranged in the sample plot at intervals of 3m. After each precipitation event ends and the penetrating rain in the forest stops, the amount of water in the rain barrel will be emptied and the penetrating rain in the barrel will be measured with the rain cup.
ZHAO Chuanyan, MA Wenying
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn