This data set includes the observation data of 40 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River since January 2014. Soil moisture of 4cm, 10cm and 20cm is the basic observation of each node; 19 nodes include the observation of soil moisture and surface infrared radiation temperature; 11 nodes include the observation of soil moisture, surface infrared radiation temperature, snow depth and precipitation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. Please refer to "waternet data document 20141206. Docx" for details
KANG Jian, LI Xin, MA Mingguo
Shule River Basin is one of the three inland river basins in Hexi corridor. In recent years, with the obvious change of climate and the aggravation of human activities, the shortage of water resources and the problem of ecological environment in Shule River Basin have become increasingly prominent. It is of great significance to study the runoff change of Shule River Basin in the future climate situation for making rational water resources planning and ecological environment protection. The Shule River basin boundary is cut from "China's 1:100000 desert sand data set". Taking the 2000 TM image as the data source, it interprets, extracts, revises, and uses remote sensing and geographic information system technology to combine with the 1:100000 scale mapping requirements to carry out thematic mapping of desert, sand and gravel gobi. Data attribute table: Area (area), perimeter (perimeter), ash_ (sequence code), class (desert code), ash_id (desert code). The desert code is as follows: mobile sand 2341010, semi mobile sand 2341020, semi fixed sand 2341030, Gobi 2342000, salt alkali land 2343000. Collect and sort out the basic, meteorological, topographical and geomorphic data of Shule River Basin, and provide data support for the management of Shule River Basin.
Correlation data of vegetation functional traits with topographic factors and pastoral animal husbandry activity factors, including: 1) observation data of main functional traits of 2-3 kinds of grassland plants in elevation, slope and slope upward; 2) correlation analysis data of vegetation functional traits and topographic factors; 3) correlation analysis data between vegetation functional traits and livestock activity intensity factors.
ZHAO Chengzhang
The data include different observation data of Sunan, Gansu Province: 1) The soil properties of grassland under different management measures, soil compactness, water permeability and soil moisture content of 4-5 grazing intensity grassland; 2) The observation data of soil compactness, permeability and water content of different grazing management measures; 3) Correlation analysis data of grassland community characteristic productivity and soil moisture; 4) Correlation analysis data of height, coverage, biomass, flower shape, tiller and leaf characters of main plants with soil water content;
ZHAO Chengzhang
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Heihe River Basin water system map is one of the hydrological and water resources part of the atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data sources: river data of Heihe River Basin, reservoir distribution data of Heihe River Basin, residential area data of Heihe River Basin in 2009, administrative boundary data of one million Heihe River Basin in 2008, Lake data of Heihe River Basin and other basic geographic data. The upper reaches of Heihe River Basin are located in Qilian County, Haibei Tibetan Autonomous Prefecture, Qinghai Province, and the northern foot of Qilian Mountain in Zhangye, Jiuquan City, Sunan and Subei counties of Gansu Province. The middle reaches are located in Shandan, Minle, Ganzhou, Linze, Gaotai, Sunan, Suzhou, Jiayuguan and Yumen counties of Gansu Province. The lower reaches are located in Jinta, Gansu Province, Ejina Banner and Alxa Right Banner of Inner Mongolia, involving three provinces (autonomous regions), 16 cities and counties (District, banner), 56 towns, 45 townships and 4 Sumu. Table 1 shows the information about the administrative divisions of Heihe River Basin.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
1. Data overview: This data set is the scale meteorological gradient data of qilian station from January 1, 2013 to December 31, 2013 (installed at the end of September 2011).VG1000 gradient observation system carries out long-term monitoring of wind speed, wind direction, air temperature, humidity, radiation and other conventional meteorological elements, and carries out data storage and processing analysis in combination with the data collector with high precision and high scanning frequency. 2. Data content: The main observation factors include four layers of air temperature, humidity and two-dimensional ultrasonic wind, rain and snow volume meter, eight layers of ground temperature, soil moisture content, etc. 3. Space and time range: Geographical coordinates: longitude: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.
WANG Xufeng, KANG Jian, Li Dazhi, Wang Zuocheng, Dong Cunhui, LI Xin, MA Mingguo
Some economic data of Zhangye City from 2001 to 2012 include: per capita GDP, GDP, the proportion of fiscal revenue to GDP, per capita fiscal revenue, industrial contribution rate, the proportion of town population to total population, the proportion of added value of tertiary industry to GDP, the proportion of added value of secondary industry to GDP, industrial comprehensive benefit index, contribution rate of total assets, contribution rate of fixed assets, social labor productivity, G DP growth rate
ZHANG Dawei
1. Data overview: This data set is the groundwater level data of qilian station from January 1, 2013 to December 31, 2013.Well no. 1 is located at the side of the general controlled hydrologic section of the cucurbitou basin, with a depth of 12.8m and an aperture of 12cm.The second well is located to the east of the delta about 100m away from the river. The depth of the well is 14.7m and the aperture is 12cm. 2. Data content: U20-hobo water level sensor is installed in the underground well, which is mainly used to monitor the groundwater level changes in the small gourgou watershed. The data are daily scale data. 3. Space and time range: Geographical coordinates of well no. 1: longitude: longitude: 99° 53’e;Latitude: 38°16 'N;Elevation: 2974m (near the hydrological section at the outlet of the basin). Geographical coordinates of well no. 2: longitude: 99° 52’e;Latitude: 38°15 'N;Altitude: 3204.1m (east of the eastern branch of the delta).
CHEN Rensheng
1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2013 to December 31, 2013. 2. Data content: at 08:00, 14:00 and 20:00 every day, the flow rate and water level change of the outlet hydrological section of hulugou River Basin are regularly observed (the flow rate is measured by ls45a rotating cup type flow meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd., and the water level change is monitored in real time by hobo pressure type water level meter), the water level flow relationship is established, and the outlet flow of the river basin is calculated. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.
CHEN Rensheng, HAN Chuntan, SONG Yaoxuan
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Comprehensive atlas of ecological hydrology of Heihe River Basin: topographic map of Heihe River Basin, scale 1:2500000, positive axis isometric conic projection, standard latitude: 25 47 n. Data source: 1:1 million landform data of Heihe River Basin, river data of Heihe River Basin, residential area data of Heihe River Basin, administrative boundary data of Heihe River Basin. According to the distribution, topography and topography of Heihe River Basin, it can be divided into four areas: high mountain area of Qilian Mountain, plain area of Hexi Corridor, middle mountain area of North Mountain of corridor and Ejina Basin.
ZHAO Jun, WANG Xiaomin, FENG Bin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The scale of Zhangye irrigation canal system map in Heihe River Basin is 1:2500000, the normal axis is equal to the conic projection, and the standard latitude is 2547 n. Data sources: Zhangye irrigation canal system data of Heihe River Basin, administrative boundary data of one million Heihe River Basin in 2008, and Heihe River Basin in 2009. The channels of Heihe River Basin are mainly distributed in Zhangye, which are divided into five levels: dry, branch, Dou, Nong and Mao.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The snow day map of Heihe River Basin is one of the hydrological and water resources in the atlas, with the scale of 1:2500000, the positive axis and equal volume conic projection, and the standard latitude of 25 47 n. Data source: this map shows the distribution of annual average snow days in 10 hydrological years in the whole Heihe River Basin from August 1, 2001 to July 31, 2011. The original data comes from MODIS daily snow products modisa 1 and myd10a1 provided by the National Snow and Ice Data Center (NSIDC) of the United States, as well as the long-term series snow depth data set of China provided by the scientific data center for cold and dry regions (WESTDC).
WANG Jianhua, ZHAO Jun, WANG Xiaomin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Comprehensive atlas of ecological hydrology of Heihe River Basin: landform type map of Heihe River Basin, scale 1:2500000, positive axis isometric conic projection, standard latitude: 2547 n. Data source: 1 million topographic map of Heihe River Basin, administrative boundary data of Heihe River Basin, river data set of Heihe River Basin, residential area data of Heihe River Basin and other basic data.
ZHAO Jun, WANG Xiaomin, FENG Bin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Comprehensive ecological and hydrological Atlas of Heihe River Basin: the main geomorphic form and genetic type of Heihe River Basin, scale 1:2500000, positive axis and equal conic projection, standard latitude: 25 47 n. Data source: 1:1 million landform data of Heihe River Basin, river data of Heihe River Basin, residential area data of Heihe River Basin, administrative boundary data of Heihe River Basin.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
The hydrological monitoring of Picea crassifolia and main shrub vegetation types, including canopy interception, soil moisture content and stemflow, was carried out at different altitude gradients in Pailugou catchment of Qilian Mountain. The monitoring time was the dynamic monitoring of growth season in 2012 and 2013.
LIU Xiande
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the average surface evapotranspiration of the heihe river basin with a resolution of 250m in 8 days from may to September 2012.The coordinate system is the projection of equal latitude and longitude, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.8 days data using synthetic way of storage, the data format for GEOTIFF, naming: 2012 ddd_evapotranspiration. Tif, including a DDD, ordinal number, for example 2012121 _evapotranspiration. Tif said 2012 day ordinal number is 121-128 days, the average surface evaporation unit is mm/d.The data type is single-precision floating point with an invalid value of -9.
JIA Li
According to the characteristics of the selected field and its surrounding area, a trime tube is arranged in the corn field, and 5 trime tubes are arranged in a direction perpendicular to the field path. When monitoring soil moisture content in the TDR vertical direction, the unit is every 10cm. Monitor down. Location: N 38 ° 52′27.6 ″ E 100 ° 21′14.0 ″ The submitted data includes the water content of the farmland and its surrounding soil (TDR monitoring) after three irrigations in a selected farmland in Yingke Irrigation District, encrypted monitoring after irrigation, one group every 3 hours within 24 hours, and 3 groups per day for the next 5 days. -10 days are two groups per day, and 10-15 days are one group per day.
HUANG Guanhua, JIANG Yao
The field experiments of water consumption and irrigation water productivity of corn and cotton were arranged in 2012 and 2013, and the field experiments of irrigation water productivity of corn and sunflower under different mulching and cultivation methods were arranged in 2014. The characteristics of water consumption and irrigation water demand of three crops under different soil conditions, as well as the relationship between key soil properties and crop yield and irrigation water productivity were obtained.
SU Yongzhong
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the daily surface evapotranspiration of the heihe river basin at 1km from 2009 to 2011.The coordinate system is the longitude and latitude projection, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.Using daily data storage, data format for GEOTIFF, naming: yyyyddd_EvapoTranspiration. tif, including yyyy for years, DDD for ordinal.The data type is single-precision floating point in mm/d and the invalid value is -9.
JIA Li
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn