This data set contains the eddy correlation-meter observation data from January 1, 2017 to December 31, 2017 at the upper reaches of the heihe hydrometeorological observation network.The station is located in qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406e, 38.8399N and 3739 m above sea level.The frame of the vortex correlator is 4.5m high, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500, replaced with Li7500RS in April 2017) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.The eddy current system Li7500 was calibrated from April 13 to 15, and the collector's data storage problem occurred from July 8 to 12, resulting in missing data.When 10Hz data is missing due to a problem with the memory card storage data, the data is replaced by the 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlativity observation data from January 1, 2017 to December 31, 2017 at the super station at the upper reaches of heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font, in which the calibration data of the vortex system Li7500A from April 13 to April 14 is missing;When 10Hz data is missing due to a problem with the storage card (2.17-2.23, 3.3-4.12), the data will be replaced by the 30-min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the flux observation data of large aperture scintillator from daman station in the middle reaches of heihe hydrometeorological observation network.Large aperture scintillators of BLS450 and BLS900 models were installed at daman station in the middle reaches of China. The north tower was the receiving end of BLS900 and the transmitting end of BLS450, and the south tower was the transmitting end and the receiving end of BLS900.The observation period is from January 1, 2017 to December 31, 2017.The station is located in dazman irrigation district, zhangye city, gansu province.The latitude and longitude of the north tower is 100.3785 E, 38.8607 N, and the latitude and longitude of the south tower is 100.3685 E, 38.8468 N, with an altitude of about 1556m.The effective height of the large aperture scintillator is 22.45m, the optical diameter length is 1854m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (Cn2 e-13 > 1.43);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, the stability universal function of Thiermann and Grassl(1992) was selected. Please refer to Liu et al(2011, 2013) for detailed introduction.Due to instrument failure, data of large aperture scintillator was missing from June 6 to July 2, 2017. Some notes on the released data :(1) the middle LAS data is mainly BLS900, the missing time is supplemented by BLS450 observation, and the missing time of both is marked with -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set includes observation data of meteorological elements in the downstream desert station of Heihe Hydrometeorological Observation Network from January 1, 2017 to December 31, 2017. The site is located in the desert beach of Ejin Banner, Inner Mongolia, and the underlying surface is red sand desert. The latitude and longitude of the observation point is 100.9872E, 42.1135N, and the altitude is 1054m.The air temperature and relative humidity sensors are installed at 5m and 10m, facing the north; the barometer is installed at 2m; the tipping bucket rain gauge is installed at 10m; the wind speed sensor is set at 5m, 10m, and the wind direction sensor is set at 10m, facing the north; the four-component radiometer is installed at 6m, facing south; two infrared thermometers are installed at 6m, facing south, the probe orientation is vertically downward; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil heat flux plates (3 pieces) are buried in the ground 6 cm in order. Observation items include: air temperature and humidity (Ta_5m, RH_5m, Ta_10m, RH_10m) (unit: centigrade, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m / s), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts / square meter), surface radiation temperature (IRT_1, IRT_2 ) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From September 17, 2017 to September 23, due to the re-enhancement of the observation tower, the data is missing (the four-component radiation missing period is from September 9 to September 23); (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2016-6-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains data from the meteorological gradient observation system of sidaqiao super station downstream of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in the four Bridges of dalaihubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1374e, 42.0012n, and 873m above sea level.Air temperature, relative humidity and wind speed sensors are installed at 5m, 7m, 10m, 15m, 20m and 28m, with a total of 6 layers, facing due north.The wind sensor is installed at 15m, facing due north;The barometer is installed in the waterproof box;Dump-type rain gauge installed at 28m;The four-component radiometer is installed at 10m, facing due south;The two infrared thermometers are installed at 10m, facing due south, and the probe is facing vertically down.The two photosynthetic effective radiometers are installed at a location of 10m, facing due south, with the probes pointing vertically up and down, respectively.Part of the soil sensor is installed at 2m to the south of the tower body, in which the soil heat flow plate (self-calibration formal) (3 pieces) is successively buried at 6cm underground;The average soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm and 200cm underground.The soil moisture sensors were embedded in the ground at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm and 200cm. The observation items are: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), up and down the photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm, Ms_200cm) (unit: volume water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm, Ts_200cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2017-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set of cloud observations at a site in Arctic Alaska is based on the fusion of five cloud inversion products that are well known worldwide. The temporal coverage of the data is from 1999 to 2009, the temporal resolution is one hour, and there are 512 layers vertically with a vertical resolution of 45 m. The spatial coverage is one site in Arctic Alaska, with latitude and longitude coordinates of 71°19′22.8′′N, 156°36′32.4′′ W. The remote sensing cloud inversion data products include the following official products: the all-phase cloud characteristic products produced by the Atmospheric Radiation Measurement Program of the US Department of Energy adopting a parametric method for remote sensing inversion, the ice cloud and hybrid cloud feature products obtained from the US NOAA researchers Matt Shupe and Dave Turner based on cooperative remote sensing inversion (optimization method + parametric method), the hybrid cloud feature (optimization method) products produced by Zhien Wang of the University of Wyoming, USA, the ice cloud feature (parametric method) products produced by Min Deng of the University of Wyoming, USA, and the cloud optical thickness products produced by Qilong Min of the State University of New York at Albany adopting remote sensing inversion (optimization method). The variables of the remote sensing products include cloud water effective radius, cloud water content, cloud ice effective radius, cloud ice content, cloud optical thickness, and cloud water column content; the corresponding observed inversion error ranges are approximately 10-30%, 30-60%, 10-30%, 30-60%, 10-30% and 10-20%. The data files are in the NC format, and an NC file is stored every month.
ZHAO Chuanfeng
The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.A large aperture scintillator of BLS900 type is installed in the downstream. The north tower is the receiving end and the south tower is the transmitting end.The observation period is from January 1, 2017 to December 31, 2017.The site is located in ejin banner, Inner Mongolia, with tamarix chinensis, populus populus, bare land and cultivated land under it.The latitude and longitude of the north tower is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.131e, 41.987 N, with an elevation of about 873m.The effective height of the large aperture scintillator is 25.5m, the optical diameter length is 2350m and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (e-14 Cn2 > 7.58);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).During the iterative calculation, the stability universal function of Thiermann and Grassl(1992) was selected.Please refer to Liu et al(2011, 2013) for detailed introduction.Due to the problem of data storage unit, data of large aperture scintillator was missing from February 21 to March 5, and July 10 to August 18, 2017. A few notes on published data :(1) data missing time is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the flux observation data of large aperture scintillator at areau station upstream of heihe hydrometeorological observation network.Two large aperture scintillation devices of BLS450 and zzlas type were set up in the upstream areau station respectively. The north tower was the receiving end of zzlas and the transmitting end of BLS450, and the south tower was the transmitting end of zzlas and the receiving end of BLS450.The observation time is January 1, 2017, solstice, December 31, 2017.The station is located in the grass daban village, a soft township, qilian county, qinghai province.The latitude and longitude of the north tower is 100.4712e, 38.0568n, and the latitude and longitude of the south tower is 100.4572e, 38.0384 N, with an altitude of about 3033m.The effective height of the large aperture scintillator is 9.5m, the optical diameter length is 2390m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS450: Cn2 > 7.25 e-14, zzlas: Cn2 > 7.84 E - 14).(2) data with weak demodulation signal strength (BLS450: Mininum X Intensity <50) were eliminated;Zzlas: Demod>-20mv);(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, for BLS450, Thiermann and Grassl(1992) stability universal function was selected.For zzlas, select Andreas 1988's stability universal function.Please refer to Liu et al(2011, 2013) for detailed introduction.From April 16 to May 26, 2017, the measurement signal of large aperture scintillator was relatively small, resulting in a large number of missing data. Several notes on the released data :(1) the upstream LAS data is mainly BLS450, the missing time is supplemented by zzlas observation, and the missing time of both is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format, please refer to the references for details. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlation-meter observation data of the mixed forest station downstream of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in Inner Mongolia ejin banner four road bridge, under the surface is populus and tamarix.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874 m above sea level.The rack height of the vortex correlativity instrument is 22m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.2m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.April 7 solstice April 8 due to instrument calibration, 3.24-4.08 infrared gas analyzer error, data missing.Suspicious data caused by instrument drift, etc., are identified in red font.When 10Hz data is missing due to a problem with the memory card storage data, the data is replaced by the 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlativity observation data of huachaizi desert station in the middle reaches of heihe hydrological meteorological observation network from January 1, 2017 to December 31, 2017.The station is located in zhangye city, gansu province.The longitude and latitude of the observation point are 100.3201E, 38.7659N and 1731.00m above sea level.The rack height of the vortex correlator is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.April 3 solstice on April 4, due to the calibration of vortex correlator Li7500A, data was missing.When the 10Hz data of the vortex correlator is missing (1.1-1.22), the data will be filled by the 30-minute data output of the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
A remote sensing image mosaic was generated for Greenland by processing a collection of 108 scenes of Landsat 8 OLI remote sensing images from 2014 to 2015 with DN correction, cloud removal correction, planetary reflectance correction, reflectance and RGB value conversion, image synthesis and merging, etc. The spatial resolution of the entire image is 30 m, and the stereographic projection method is adopted.
Zhuoqi Chen
The data set contains the slope aspect (resolution: 30 m) factor affecting soil erosion on the Loess Plateau and the slope aspect data extracted from the elevation data of the Loess Plateau. Each theme map is divided into frames according to the 1:250000 scale standard map cartography method, and the frames are denoted by the 1:250000 scale standard map cartography number. The geographical coordinate is WGS1984; the accuracy can meet the requirements of regional scale hydrology and soil erosion analysis and forecasting.
LIU Baoyuan, SHI Haijing
The data set includes estimated data on the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on the MODIS 16-day synthetic NDVI product (MOD13A2 collection 6). Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage ranges from 2001 to 2014, and the spatial resolution is 1 km.
WANG Xufeng
The data set contains the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin. The observation projects include the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin.
WEI Yanqiang, Establishing Developing and Applying of the Space-Air-Field Integrated Eco-Monitoring and Data Infrastructure of the Three-River-Source National Park
Overviewing the various frozen soil maps in China, there are great differences in the classification systems, data sources, and mapping methods. These maps represent the stage of understanding of the permafrost distribution of China in the past half century. To reflect the distribution and area of frozen soil in our country more reasonably, we have made a new frozen soil distribution map based on the analysis of the existing frozen soil maps. The map combines several existing maps of permafrost and the simulation results of a permafrost distribution model on the Tibetan Plateau. It unifies the acquisition time of data from various parts of the country and reflects the distribution of permafrost in our country around 2000. In the new frozen soil map, the distributions of various types of frozen soil are determined according to the following principles. 1. The base map uses the Geocryological Regionalization and Classification Map of the Frozen Soil in China (1:10 000 000) (Guoqing Qiu et al., 2000). The distribution of permafrost and instantaneous frozen soil in the high mountains outside the Tibetan Plateau follows the original map; the boundaries of seasonal frozen soil and instantaneous frozen soil, instantaneous frozen soil and nonfrozen soil remain unchanged, too. The distribution of permafrost on the Tibetan Plateau and in the high latitudes of the Northeast is updated with the following results. 2. The distribution of high-altitude permafrost and alpine permafrost in the Tibetan Plateau region is updated using the simulation results of Zhuotong Nan et al. (2002). This model uses the measured average annual ground temperature data of 76 boreholes along the Qinghai-Tibet Highway to perform regression statistical analysis and obtains the relationship between annual mean geothermal data with latitude and elevation. Based on this relationship, combined with the GTOPO30 elevation data (global 1-km digital elevation model data developed under the leadership of the US Geological Survey's Earth Resources Observation and Technology Center), the average annual ground temperature distribution over the entire Tibetan Plateau is simulated, the average annual ground temperature is 0.5 C, and it is used as the boundary between permafrost and seasonal frozen soil. 3. The distribution of permafrost at high latitudes in the Northeast is based on the latest results from Jin et al. (2007). Jin et al. (2007) analyze the average annual precipitation and soil moisture in Northeast China over the past few decades and conclude that the relationship between the southern boundary of permafrost in Northeast China and the annual average temperature has not changed substantially in the past few decades. 4. Alpine permafrost distribution in other regions is updated with the Map of the Glaciers, Frozen Ground and Deserts in China (1:4 million) (Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006). In terms of classification systems, the current existing frozen soil maps use continuous standards for the division of permafrost, but the specific definition of continuity is very different. Many studies have shown that the continuity criterion is a concept closely related to scale, it is not suitable for the classification of permafrost at high altitude (Guodong Cheng, 1984; Cheng et al., 1992), and it cannot be applied to the permafrost distribution model that uses grid as the basic simulation unit. In this paper, we abandon the continuity criteria and take the existence of frozen soil in the mapping unit (grid or region). The new frozen soil map divides China's frozen soil into several categories: (1) High latitude permafrost; (2) High altitude permafrost; (3) Plateau permafrost; (4) Alpine permafrost; (5) Medium-season seasonal frozen soil: the maximum seasonal freezing depth that can be reached is >1 m; (6) Shallow seasonal frozen soil: the maximum seasonal freezing depth that can be achieved is <1 m; (7) Instant frozen soil: less than one month of storage time; and (8) Nonfrozen soil. For a specific description of the data, please refer to the explanatory documents and citations.
RAN Youhua, LI Xin
The data set contains land cover data sets from the Yellow River Source, the Yangtze River Source, and the Lancang River from 1992 to 2015. A total of 22 land cover classifications based on the UN Land Cover Classification System were included. NOAA AVHRR, SPOT, ENVISAT, PROBA-V and other vegetation classification products were integrated. In China, (1) first, combined with the 1:100,000 vegetation classification (2007) of China, quality correction and control were performed, and (2) the vegetation classification of China emphasized the combination with climate zones, when correcting CCI-LC, climate divisions and the corresponding vegetation types were combined, and the data label was comprehensively revised.
WEI Yanqiang
CMADS V1.1(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.1) Version of the data set introduced the STMAS assimilation algorithm. It was constructed using multiple technologies and scientific methods, including loop nesting of data, projection of resampling models, and bilinear interpolation. The CMADS series of datasets can be used to drive various hydrological models, such as SWAT, the Variable Infiltration Capacity (VIC) model, and the Storm Water Management model (SWMM). It also allows users to conveniently extract a wide range of meteorological elements for detailed climatic analyses. Data sources for the CMADS series include nearly 40,000 regional automatic stations under China’s 2,421 national automatic and business assessment centres. This ensures that the CMADS datasets have wide applicability within the country, and that data accuracy was vastly improved. The CMADS series of datasets has undergone finishing and correction to match the specific format of input and driving data of SWAT models. This reduces the volume of complex work that model builders have to deal with. An index table of the various elements encompassing all of East Asia was also established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating the need for any format conversion or calculations using weather generators. Consequently, significant improvements to the modelling speed and output accuracy of SWAT models were achieved. Most of the source data in the CMADS datasets are derived from CLDAS in China and other reanalysis data in the world. The integration of air temperature (2m), air pressure, humidity, and wind speed data (10m) was mainly achieved through the LAPS/STMAS system. Precipitation data were stitched using CMORPH’s global precipitation products and the National Meteorological Information Center’s data of China (which is based on CMORPH’s integrated precipitation products). The latter contains daily precipitation records observed at 2,400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.The inversion algorithm for incoming solar radiation at the ground surface makes use of the discrete longitudinal method by Stamnes et al.(1988)to calculate radiation transmission. The resolutions for CMADS V1.0, V1.1, V1.2, and V1.3 were 1/3°, 1/4°, 1/8°, and 1/16°, respectively. In CMADS V1.0 (at a spatial resolution of 1/3°), East Asia was spatially divided into 195 × 300 grid points containing 58,500 stations. Despite being at the same spatial resolution as CMADS V1.0, CMADS V1.1 contains more data, with 260 × 400 grid points containing 104,000 stations. For both versions, the stations’ daily data include average solar radiation, average temperature (2m), average pressure, maximum and minimum temperature (2m), specific humidity, cumulative precipitation, and average wind speed (10m). The CMADS comprises other variables for any hydrological model(under 'For-other-model' folder): Daily Average Temperature (2m), Daily Maximum Temperature (2m), Daily Minimum Temperature (2m), Daily cumulative precipitation (20-20h), Daily average Relative Humidity, Daily average Specific Humidity, Daily average Solar Radiation, Daily average Wind (10m), and Daily average Atmospheric Pressure. Introduction to metadata of CMADS CMADS storage path description:(CMADS was divided into two datesets) 1.CMADS-V1.0 For-swat --specifically driving the SWAT model 2.CMADS-V1.0 For-other-model --specifically driving the other hydrological model(VIC,SWMM,etc.) CMADS-- For-swat-2009 folder contain:(Station and Fork ) 1).Station Relative-Humidity-58500 Daily average relative humidity(fraction) Precipitation-58500 Daily accumulated 24-hour precipitation(mm) Solar radiation-58500 Daily average solar radiation(MJ/m2) Tmperature-58500 Daily maximum and minimum 2m temperature(℃) Wind-58500 Daily average 10m wind speed(m/s) Where R, P, S, T, W+ dimensional grid number - the number of longitude grid is the station in the above five folders respectively.(Where R,P,S,T,W respective Daily average relative humidity,Daily cumulative precipitation(24h),Daily mean solar radiation(MJ/m2),Daily maximum and minimum temperature(℃) and Daily mean wind speed (m/s)) respectively.Data format is (.dbf) 2).Fork (Station index table over East Asia) PCPFORK.txt (Precipitation index table) RHFORK.txt (Relative humidity index table) SORFORK.txt (Solar radiation index table) TMPFORK.txt (Temperature index table) WINDFORK.txt (Wind speed index) CMADS-- For-swat-2012 folder contain:(Station and Fork ) Storage structure is consistency with For-swat- 2009 .However, all the data in this directory are only available in TXT format and can be readed by SWAT2012. 3) For-other-model (Includes all weather input data required by the any hydrologic model (daily).) Atmospheric-Pressure-txt Daily average atmospheric pressure(hPa) Average-Temperature-txt Daily average 2m temperature(℃) Maximum-Temperature-txt Daily maximum 2m temperature(℃) Minimum-Temperature-txt Daily minimum 2m temperature(℃) Precipitation-txt Daily accumulated 24-hour precipitation (mm) Relative-Humidity-txt Daily average relative humidity(fraction) Solar-Radiation-txt Daily average solar radiation(MJ/m2) Specific-Humidity-txt Daily average Specific Humidity(g/kg) Wind-txt Daily average 10m wind speed(m/s) Data storage information: data set storage format is .dbf and .txt Other data information: Total data:45GB Occupied space: 50GB Time: From year 2008 to year 2014 Time resolution: Daily Geographical scope description: East Asia Longitude: 60° E The most east longitude: 160°E North latitude: 65°N Most southern latitude: 0°N Number of stations: 58500 stations Spatial resolution: 1/3 * 1/3 * grid points Vertical range: None
Meng Xianyong, Wang Hao
The data set contains NPP products data produced by the maximum synthesis method of the three source regions of the Yellow River, the Yangtze River and the Lancang River. The data of remote sensing products MOD13Q1, MOD17A2, and MOD17A2H are available on the NASA website (http://modis.gsfc.nasa.gov/). The MOD13Q1 product is a 16-d synthetic product with a resolution of 250 m. The MOD17A2 and MOD17A2H product data are 8-d synthetic products, the resolution of MOD17A2 is 1 000 m, and the resolution of MOD17A2H is 500 m. The final synthetic NPP product of MODIS has a resolution of 1 km. The downloaded MOD13Q1, MOD17A2, and MOD17A2H remote sensing data products are in HDF format. The data have been processed by atmospheric correction, radiation correction, geometric correction, and cloud removal. 1) MRT projection conversion. Convert the format and projection of the downloaded data product, convert the HDF format to TIFF format, convert the projection to the UTM projection, and output NDVI with a resolution of 250 m, EVI with a resolution 250 m, and PSNnet with resolutions of 1 000 m and 500 m. 2) MVC maximum synthesis. Synthesize NDVI, EVI, and PSNnet synchronized with the ground measured data by the maximum value to obtain values corresponding to the measured data. The maximum synthesis method can effectively reduce the effects of clouds, the atmosphere, and solar elevation angles. 3) NPP annual value generated from the NASA-CASA model.
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
The data set includes the estimated data of the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on 10-day synthetic NDVI products from the SPOT satellite. Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage is from 1999 to 2013, and the spatial resolution is 1 km.
WANG Xufeng
The data set contains meteorological observations from Guoluo Station from January 1, 2017, to December 31, 2017, and includes temperature (Ta_1_AVG), relative humidity (RH_1_AVG), vapour pressure (Pvapor_1_AVG), average wind speed (WS_AVG), atmospheric pressure (P_1), average downward longwave radiation (DLR_5_AVG), average upward longwave radiation (ULR_5_AVG), average net radiation (Rn_5_AVG), average soil temperature (Ts_TCAV_AVG), soil water content (Smoist_AVG), total precipitation (Rain_7_TOT), downward longwave radiation (CG3_down_Avg), upward longwave radiation (CGR3_up_Avg), average photosynthetically active radiation (Par_Avg), etc. The temporal resolution is 1 hour. Missing observations have been assigned a value of -99999.
HU Linyong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn