This set of data is the simulation result of the newly developed land eco-hydrological model CLM_LTF.This model is on top of the land-surface process model CLM4.5 developed by NCAR, coupling the groundwater lateral flow module and considering the role of human irrigation. The model runs from 1981 to 2013, with a spatial resolution of 30 arc seconds (0.0083 degrees), a time step of 1,800 seconds, and a simulation range of the heihe river basin.Air force in 1981-2012 is used by the Chinese academy of sciences institute of the qinghai-tibet plateau of qinghai-tibet plateau more layers of data assimilation and simulation center development areas of China high space-time resolution ground meteorological elements drive data set, air is forced to use 2013 national meteorological information center of wind pressure high resolution made by the wet precipitation temperature radiation data set.The land cover data is a 1km land cover grid data set for the MICLCover heihe river basin, and the irrigation data is shown in "monthly 30-arcsecond resolution surface water and groundwater irrigation data set for the heihe river basin 1981-2013" of the scientific data center for cold and dry regions.The mode output is the monthly average. The document is described as follows: Groundwater depth data: heihe_zwt.nc 2cm soil moisture data: heihe_h2osoi_2cm. nc 100cm soil moisture data: heihe_h2osoi_100cm.nc Evaporation data: Heihe_evaptanspiration. Nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information. The data is stored in the data variable. The underground water depth data is in m, the soil moisture data is in m^3/m^3, and the evapotranspiration data is in mm/month
XIE Zhenghui
1、 Data Description: data includes doc and DIC values of river water and groundwater in hulugou small watershed from July to September 2015. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. The first sampling point is located at the hydrological section at the outlet of hulugou Small Watershed at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points. The spring sampling point is located at 20 m to the east of the drainage basin outlet, with the longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: Doc and DIC values of samples were measured by oiaurora 1030w TOC instrument, detection range: 2ppb c-30000ppm C.
MA Rui , HU Yalu
The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau.
MA Rui , HU Yalu
1、 Data Description: the data includes the samples of anions and anions of river water and groundwater in hulugou small watershed from July to September 2015 for test and analysis. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. One is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with latitude and longitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points are 20 m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: the cation of sample is tested by inductively coupled plasma atomic emission spectrometer (ICP-AES), the test accuracy is 0.05mg/l, and the anion is tested by ion chromatograph (ics1100), the test accuracy is 0.002mg/l.
MA Rui , HU Yalu
The data sets of 2005-2007, heihe river middle reaches area of underground water level monitoring value, contains the shandan bridge, children's pawn, fountain, the king of the brake, big full, PCCW main canal, under the new ditch, Shi Gangdun, Ann, under the qin dynasty, the stockade, taiping fort, yue jia pfe, zhang ye, liao home fort, Yang's farm village, railway stations, three gates, tile kiln, xiejiawan, under the cliff, meteor smoke, oasis, xiguan, ShaJingZi, river hydrological station 3 years of monthly average water level.The data are from the hydrological yearbook. Due to the lack of data, the average water level data of some hydrological stations are missing.
HU Litang, XU Zongxue
Agricultural irrigation, which accounts for about 80% of human water consumption, is the most important part of human water resources management and closely related to human survival and development.Irrigation is also an important part of the water cycle. Large-scale irrigation can affect the water cycle and even the local climate by affecting evapotranspiration.Excessive diversion of irrigation water will lead to unsustainable utilization of water resources, and at the same time, will reduce river flow and aquifer water reserves, thus harming the ecological environment. Therefore, determining the spatial and temporal distribution and variation of irrigation is critical to studying past human water use, the impact of irrigation on ecological and hydrological processes, the environment and climate, and the development of future irrigation plans. By integrating the irrigation amount of channel diversion water and irrigation amount of groundwater intake from different data sources, and combining the evapotranspiration data of land surface model CLM4.5 simulation and remote sensing inversion, a set of spatio-temporal continuous surface water and groundwater irrigation amount data set with spatial resolution of 30 arcseconds (0.0083 degrees) on the scale of 1981-2013 in heihe river basin was made. It has been verified that this data set has a high reliability from 2000 to 2013, and a lower reliability from 1981 to 1999 than from 2000 to 2013 due to the absence of remote sensing data and the absence of soil utilization changes. The document is described as follows: Monthly surfacewater irrigation volume file name: monthly_surfacewater_irrigation gation_1981-2013.nc Monthly groundwater_irrigation gation_1981-2013.nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information.
XIE Zhenghui
1. Data Overview: This data includes groundwater buried depth observation datal from 4 observation points in Ganzhou District of Zhangye Basin in the middle reaches of the Heihe River (The nursery garden of Xindun Town, Suijia temple of Xindun Town, the Wuzhi management house of Dangzhai Town, Shangqin Station of Shangqin Town). The data was obtained from July 12, 2012 to July 5,2014. 2. Data Content: The HOBO water level sensor is installed in the underground well, which is mainly used to monitor the dynamic change of groundwater level in Ganzhou District of Zhangye. The data contents are absolute air pressure (kPa), temperature (°C), and groundwater depth (m). The data was recorded hourly. 3. Time and Space Range: The geographical coordinates of the nursery garden well of Xindun Town (1559 m) : Longitude 100°20.8′E; Latitude: 38°54′N; The geographical coordinates of Suijia temple well of Xindun Town(1518 m) : Longitude: 100°23.9′E; Latitude: 38°54.1′N; The geographical coordinates of Wuzhi management house well of Dangzhai Town (1675 m): Longitude: 100°30.7′E; Latitude: 38°52.8′N; The geographical coordinates of Shangqin Station well of Shangqin Town(1480 m): Longitude: 100°31.7′E; Latitude: 38°54.5′N. Note: The number in brackets is elevation.
XIE Zhenghui
1、 Data Description: the data includes the observation data of groundwater level in the delta area of hulugou small watershed from July 24, 2014 to September 11, 2014, with the monitoring frequency of 1H / time. 2、 Sampling location: the groundwater level observation point is located at the top of the alluvial proluvial fan in front of the delta mountain, with the coordinates of 99 ° 52'45.38 "E, 38 ° 15'21.27" n.
MA Rui
It mainly includes the field soil moisture, groundwater level, soil physical properties, temperature, flux, plant growth, soil nutrients, trunk stem flow, farmland microclimate, soil profile water content and other observation data.
SHAO Mingan
The data set is the contour map of the diving level in the middle reaches of heihe main stream, which contains the diving level profile of the middle reaches of heihe main stream in 2005, 2006 and 2007. It is made by arcgis as a vector map.Contains attributes such as length, elevation and thickness of equal water level line.Its scope is: Left: 604028.6599 right: 645635.1531 Above: 4333504.1090 below: 4296403.637
XU Zongxue
Data source: simulation results of the Heihe groundwater model from Tsinghua University; Summary of content: 2003-2012 simulation water level of the observation well : the letters indicate the area where the observation well is located (L-Linze, Z-Zhangye, G-Gaotai, J-Jinta, E-Ejina), and the number indicates the number of the observation well. Time range: 2003-2012 month data
WANG Zhongjing
This project is based on the gsflow model of USGS to simulate the surface groundwater coupling in Zhangye basin in the middle reaches of Heihe River. The space-time range and accuracy of the simulation are as follows: Simulation period: 1990-2012; Simulation step: day by day; The spatial scope of simulation: Zhangye basin; The spatial accuracy of simulation: the underground part is 1km × 1km grid (5 layers, the total number of grids in each layer is 150 × 172 = 25800, among which the active grid 9106); the surface part is based on the hydrological response unit (HRU) (588 in total, each HRU covers an area of several square kilometers to dozens of square kilometers). The data include: surface infiltration, actual evapotranspiration, average soil moisture content, surface groundwater exchange, shallow groundwater level, simulated daily flow of Zhengyi gorge, simulated monthly flow of Zhengyi gorge, groundwater extraction and river diversion
ZHENG Yi
1、 Data Description: the data includes the flow data of spring 02 and spring 08 in hulugou small watershed from July 10, 2014 to September 10, 2014, with the data frequency of 15 days / time. 2、 Sampling location: No.02 spring is located 30 m away from the east of the outlet of the general drainage basin, with latitude and longitude coordinates of 38 ° 16 ′ 11.44 ″ N and 99 ° 52 ′ 50.9 ″ E. Spring No. 08 is located on the side of the intersection of the East and West Branch ditches near the East Branch ditches, with latitude and longitude coordinates of 38 ° 15'27.76 "n, 99 ° 52'46.41" E.
MA Rui
1. Data overview: This data set is the daily scale groundwater level data of Qilian station from November 1, 2011 to December 31, 2011. In October 2011, two groundwater monitoring wells were arranged in hulugou small watershed. Well 1 is located beside the general control hydrological section of hulugou watershed, with a depth of 12.8m and an aperture of 12cm. Well 2 is located in the east of the Delta, about 100m away from the river, with a depth of 14.7m and an aperture of 12cm. 2. Data content: U20hobo water level sensor is arranged in the groundwater well, which is mainly used to monitor the change of groundwater level and temperature in hulugou small watershed. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. 3. Space time scope: Geographic coordinates of well 1: longitude: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2974m (near the hydrological section at the outlet of the basin). Geographic coordinates of well 2: longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3204.1m (east side of the East Branch of the delta).
HAN Chuntan, CHEN Rensheng, SONG Yaoxuan, LIU Junfeng, YANG Yong, QING Wenwu, LIU Zhangwen
1. Data overview: This data set is the groundwater level data of qilian station from January 1, 2013 to December 31, 2013.Well no. 1 is located at the side of the general controlled hydrologic section of the cucurbitou basin, with a depth of 12.8m and an aperture of 12cm.The second well is located to the east of the delta about 100m away from the river. The depth of the well is 14.7m and the aperture is 12cm. 2. Data content: U20-hobo water level sensor is installed in the underground well, which is mainly used to monitor the groundwater level changes in the small gourgou watershed. The data are daily scale data. 3. Space and time range: Geographical coordinates of well no. 1: longitude: longitude: 99° 53’e;Latitude: 38°16 'N;Elevation: 2974m (near the hydrological section at the outlet of the basin). Geographical coordinates of well no. 2: longitude: 99° 52’e;Latitude: 38°15 'N;Altitude: 3204.1m (east of the eastern branch of the delta).
CHEN Rensheng
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The hydrogeological map of Heihe River Basin is one of the chapters on hydrology and water resources in the atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data source: hydrogeological map of Hexi Corridor (1:50000) issued by Gansu Provincial Institute of address survey. According to the survey conducted by Gansu Provincial Institute of geology, 1516 hydrogeological boreholes (119049 meters in total) were collected and sorted out; and 6947 groundwater extraction wells.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
11 groundwater level observation logs are arranged in the transition zone from Heihe River to desert oasis in Pingchuan oasis, Linze. From May to July 2012-2013, the groundwater level is monitored three times a month, and the NO3-N content, Cl, SO42 - change are analyzed by sampling once a month.
Groundwater is the main water source of desert riparian plants, and also the most important environmental factor affecting the normal physiological status of plants. In this project, an observation field was set up in Populus euphratica forest near the Alxa Desert eco hydrological experimental research station from 2011 to 2013 By manually measuring the groundwater depth every month in the year, it can provide basic data support for the study on the transpiration water consumption mechanism of Populus euphratica, and also can be used for the estimation of ecological water demand in the study area.
SI Jianhua
Data of four hydrogeological boreholes constructed in the badain jaran desert area of alxa right banner in 2013 are provided, including borehole construction reports, borehole location plans and borehole profiles.Adopt the core of quaternary and bedrock, install the filter tube at the bottom of the well, wash the well. Quantity of work: 4 boreholes with Numbers of K1, K2, K3 and K4.The total footage is designed according to 240 m, with an average single hole depth of 60 m. The actual depth control standard is the exposure of bedrock.
WANG Xusheng, HU Xiaonong
Automatic monitoring data of groundwater level depth and salinity of three shallow groundwater observation Wells in ejin delta. Data contents include: observation well number, geographical coordinates, description of surface features, buried depth of groundwater level (unit: cm), salinity (unit: mS/cm). In terms of space, the dynamic monitoring of water and salt is set up in desert gobi area, natural oasis area and artificial oasis area in ejin delta, representing three typical underlying surface conditions.Since May 12, 2011, the frequency of observation has been 30 minutes.
YU Jingjie
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn