This dataset includes the emissivity spectrum (8-14 µm) of typical ground objects in Zhangye City, Zhangye airport, desert and farmland at Wuxing experiment area. The data was measured by the BOMEM MR304 FTIR (Fourier Transform Infrared Spectrometer). A. Objective The objective of the thermal infrared (TIR) spectrum measurement lies in: Radiometric calibration for the airborne TIR sensor, land surface emissivity products validation and collecting typical surface spectrum working as priori knowledge in land surface temperature inversion and ecological and hydrological models. B. Instruments and theory Instruments: BOMEM MR304 FTIR, Mikron M340 blackbody, BODACH BDB blackbody, diffused golden plate, Fluke 50-series II thermometer Measurement theory: The target radiance is directly measured by the MR304 FTIR under clear-sky condition while the atmospheric downward radiance is obtained through a diffused golden plate, and emissivity is retrieved by the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm C. Experiment site and targets 29-5-2012: Stone bricks, grassland and asphalt, etc at square of Zhangye. 20-6-2012: Roof of the building in Zhangye, water and sand sample collected from the desert, etc. 30-6-2012: Cement road at Zhangye airport, desert around the Zhangye airport. 3-7-2012: Corn leaves, soil and road in the farmland at Wuxing village, Zhangye City. 4-7-2012: Corn leaves, wheat canopy at Xiaoman town, Zhangye City. 10-7-2012: Bricks of Runquanhu park, Zhangye City. 13-7-2012: Corn leaves and other plants at Wuxing village, Zhangye City. D. Data processing The original data collected by BOMEM FTIR is firstly calibrated using the calibration data and get the radiance spectrum of the targets and sky (*.rad), then, the radiance data is converted to the easy readably text file (ASCII format). The time used in this dataset is in UTC+8 Time.
MA Mingguo, XIAO Qing
This dataset includes the emissivity spectrum of typical ground objects in middle researches of the Heihe river basin. This dataset was acquired in oasis, desert, Gobi and wetland of experiment area. Time range starts from 2012-05-25 to 2012-07-18 (UTC+8). Instrument: MODEL 102F PORTABLE FTIR (Fourier Transform Infrared Spectrometer), Handheld infrared thermometer. Measurement methods: at the first step, measure the thermal radiance of cold blackbody, warm blackbody, sample and gold plate (Downwelling Radiance). The radiance of cold blackbody and warm blackbody was used to calibrate the instrument, and eliminate the “noise” caused by the device itself. The retrieval of emissivity and temperature was then performed using iterative spectrally smooth temperature-emissivity separation (ISSTES) algorithm. The retrieved emissivity spectrum range from 8 to 14 μm, with spectral resolution of 4cm-1. Dataset contains the original recorded spectra (in ASCII format) and the log files (in doc format). The processed data are emissivity curves (ASCII) that ranged from 8 to 14 μm, and the temperatures of samples. Thermal photos of the sample, digital photo of the scene and the object are recorded in some cases.
MA Mingguo
The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.
YU Wenping, WANG Zengyan, MA Mingguo
The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time and other details On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded. On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region. On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation. 3. Data storage All the observation data were stored in excel.
GENG Liying, Jia Shuzhen, WANG Haibo, PENG Li, Dong Cunhui
This data set is typical specific emissivity data set of Heihe River Basin. Data observation is from March 25, 2014 to June 30, 2015. Instrument: Portable Fourier transform infrared spectrometer (102f), hand-held infrared thermometer Measurement method: 102f was used to measure the radiation values of cold blackbody, warm blackbody, observation target and gold plate. Using the radiation value of the cold and warm blackbody, the 102f is calibrated to eliminate the influence of the instrument's own emission. By using the iterative inversion algorithm based on smoothness, the specific emissivity and the object temperature are inversed. The specific emissivity range is 8-14 μ m, and the resolution is 4cm-1. This data set contains the original radiation curves (in ASCII format) and recording files of cold blackbody, warm blackbody, measured target and gold plate obtained by 102f.
YU Wenping, REN Zhiguo, TAN Junlei, Li Yimeng, WANG Haibo, MA Mingguo
The dataset of sun photometer observations was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas. 24 times observations were carried out by CE318 from BNU (at 1020nm, 936nm, 870nm, 670nm and 440nm, and column water vapor by 936 nm data) and from Institute of Remote Sensing Applications, CAS (at 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data) on May 20, 23, 25 and 27, Jun. 4, 6, 16, 20, 22, 23, 27 and 29, Jul. 1, 7 and 11, 2008. Those atmospheric measurements synchronized with airborne (i.e. WiDAS, OMIS) and spaceborne sensors (i.e. TM, ASTER,CHRIS and Hyperion) Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters. Field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see Geometric Positions and the Total Optical Depth of Each Channel and Rayleigh Scattering and Aerosol Optical Depth of Each Channel).
REN Huazhong, YAN Guangkuo, GUANG Jie, SU Gaoli, WANG Ying, ZHOU Chunyan
The dataset of sun photometer observations was obtained in Linze grassland station, the reed plot A, the saline plot B, the barley plot E, the observation stationof the Linze grassland foci experimental areaand Jingdu hotel of Zhangye city. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318 from May 30 to Jun. 11, 2008. And from Jun. 15 to Jul.11, the data of 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were acquired. Both measurements were carried out at intervals of 1 minute. Optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, air temperature and pressure near land surface, the solar azimuth and zenith could all be further retrieved. Readme file was attached for detail.
LIANG Ji, WANG Xufeng
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 1, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert No. 1 plot by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0; from Institute of Remote Sensing Applications), observing straight downwards at intervals of 1s in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (3) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (4) The reflectance spectra by ASD in Yingke oasis maize field (350-2500nm , from BNU, the vertical canopy observation and the transect observation), and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS, the NE-SW diagonal observation at intervals of 30m). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (6) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 1 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (7) Atmospheric parameters on the playroom roof at the resort by CE318 (produced by CIMEL in France). The underlying surface was mainly composed of crops and the forest (1526m high). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Narrow channel emissivity of the bare land and vegetation by the W-shaped determinator in Huazhaizi desert No. 1 plot. Four circumstances should be considered for emissivity, with the lid plus the au-plating board, the au-plating board only, the lid only and without both. Data were archived in Word.
CHEN Ling, HE Tao, REN Huazhong, REN Zhixing, YAN Guangkuo, ZHANG Wuming, XU Zhen, LI Xin, GE Yingchun, SHU Lele, JIANG Xi, HUANG Chunlin, GUANG Jie, LI Li, LIU Sihan, WANG Ying, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, CHEN Shaohui, LIANG Wenguang, LI Xiaoyu, CHENG Zhanhui, Liu Liangyun, YANG Tianfu
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature by the handheld radiometer (BNU) in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (2) The component temperature of maize and wheat by the handheld radiometer in Yingke oasis maize field, Yingke wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (4) The radiative temperature and the canopy multi-angle radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (2 instruments for maize canopy), Huazhaizi desert maize field (only one for maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). The thermal infrared remote sensing calibration was carried out in the resort plot. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (5) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (6) Reflectance spectra of Yingke oasis maize field (350-2500nm, from Institute of Remote Sensing Applications) and resort calibration site (350-2500nm, from Beijing Univeristy) by ASD (Analytical Sepctral Devices); BRDF by the self-made observation platform. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (7) Atmospheric parameters at the resort calibration site by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Soil moisture (0-40cm) by the cutting ring, the soil temperature by the thermocouple thermometer, roughness by the self-made roughness board and the camera in Huazhaizi desert No. 1 plot. Sample points were selected every 30m along the diagonals. Data were all archived in Excel format. (9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (10) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Word. LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format of May 31.
CHAI Yuan, CHEN Ling, HE Tao, KANG Guoting, QIAN Yonggang, REN Huazhong, REN Zhixing, WANG Haoxing, ZHANG Wuming, ZOU Jie, GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, GUANG Jie, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, LIANG Wenguang, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Radiative temperature of maize, wheat and the bare land (in Yingke oasis maize field), vegetation and the bare land (Huazhaizi desert No. 2 plot) by the thermal cameras at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format and radiative files are stored in Excel format. . (3) Photosynthesis by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (4) Ground object reflectance spectra in Yingke oasis maize field, Huazhaizi maize field, Huazhaizi desert No. 1 and 2 plots, by ASD FieldSpec (350~2500 nm) from Institute of Remote Sensing Applications (IRSA), CAS. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail, and pre-processed data on reflectance were in .txt format. (5) The radiative temperature in Huazhaizi desert No. 2 plot by the handheld infrared thermometer (BNU and IRSA). Raw data, blackbody calibrated data and processed data (in Excel format) were all archived. (6) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (7) The radiative temperature of the maize canopy by the automatic thermometer (FOV: 10°; emissivity: 0.95) mearsued at nadir with an time intervals of 1s in Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived as Excel files. (8) Maize albedo from two shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.
REN Huazhong, WANG Tianxing, YAN Guangkuo, LI Li, LI Hua, LIU Sihan, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, YANG Guijun, LI Xiaoyu, CHENG Zhanhui, Liu Liangyun
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire VNIR, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Emissivity of maize and wheat in the Yingke oasis by portable 102F (2.0~25.0um) from BNU. Warm blackbody, cold blackbody, the target and the au-plating board of known emissivity. Raw data of those four measurements were archived in *.WBX, *.CBX, *.SAX and *.CBX Besides, the spectral radiance and emissivity calculated by 102F were archived in *.RAX and *.EMX, respectively. Meanwhile, the final spectral emissivity of targets were also calculated by TES (ISSTES). (3) LAI of mazie and wheat in Yingke oasis maize field. The maximum leaf length and width of leaves were measured. Data were archived as Excel files of Jul. 2. (4) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in MS Office Word format. (5) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), measured at nadir with time intervals of one second in Yingke oasis maize field (one from BNU and the other from Institute of Remote Sensing Applications), Huazhaizi desert maize field (only one from BNU for continuous radiative temperature of the maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the background bare soil). Raw data, blackbody calibrated data and processed data were all archived as Excel files. (6) the component temperature in Yingke oasis maize field (by the handheld radiometer and the thermal image from BNU), Yingke oasis wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in MS Office Word format), recorded data and the blackbody calibrated data (in Excel format). (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the observation height). Data were archived in MS Office Excel format. (8) the radiative temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the NE-SW diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (9) ground object reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350~2 500 nm) from BNU. The vertical canopy observation and the line-transect observation were used. The data included raw data (from ASD, read by ViewSpecPro), recorded data and processed data on reflectance (in Excel format).
CHEN Ling, GUO Xinping, REN Huazhong, WANG Tianxing, XIAO Yueting, YAN Guangkuo, CHE Tao, GE Yingchun, GAO Shuai, LI Hua, LI Li, LIU Sihan, SU Gaoli, WU Mingquan, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, FAN Wenjie, SHEN Xinyi, YU Fan, YANG Guijun, Liu Liangyun
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 7, 2008. Observation items included: (1) the radiative temperature by the thermal camera (Institute of Remote Sensing Applications) of maize, wheat and the bare land of Yingke oasis maize field at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format, and blackbody calibrated data and processed data were all archived as Excel files. (2) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-1603nm) from Institute of Remote Sensing Applications (CAS). The grey board and the black and white cloth were also used for calibration on the CCD camera. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) the component temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (5) the radiative temperature by the handheld radiometer (emissivity = 1.0) in Yingke oasis maize field (for the canopy mean temperature), Huazhaizi desert maize field (for the transect temperature), Zhangye airport (the black and white cloth for calibration) and Huazhaizi desert No. 2 plot (the diagonal radiative temperature and the radiative temperature of 30m*30m subplot). The component temperature was also measured. The data included raw data (in Word format), recorded data and the blackbody calibrated data (as Excel files). (6) The air temperature (°C) , the soy bean leaf temperature (°C) and the maize leaf temperature (°C) by SPAD (from Institute of Remote Sensing Applications (CAS)) in Yingke oasis maize field. Besides, spectrum, photosynthesis, fluorescence and chlorophyll were measured as well. (7) The leaf reflectance spectra ASD (serial number: 64831) and 50% grey board from Institute of Remote Sensing Applications (CAS). The spectral DN was changed into radiance based on the 50% grey board calibration data and calibration lamp data, which could further be transformed into Excel format. Moreover, the solar radiance=the reference board radiance/the reference reflectance. (8) The leaf fluorescence by ImagingPam from Beijing Academy of Agriculture and Forestry Sciences. YII = (Fm'-F)/Fm' was applied for caculation, F indicating fluorescence before saturating flash light, Fm' the maximum fluorescence before saturating flash light, and YII the quantum yield of photosystem II. Data were archived in pim and could be read by ImagingPam, which can be downloaded from http://www.zealquest.com. (9) The leaf photosynthesis by LI-6400. (10) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), observing straight downwards at intervals of 1s in Yingke oasis maize field and Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (11) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (12) Atmospheric parameters near Daman Water Management office by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, REN Huazhong, WANG Tianxing, YAN Guangkuo, HAO Xiaohua, WANG Shuguo, LI Li, LI Hua, LIU Sihan, SU Gaoli, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, LI Xinhui, YU Fan, ZHU Xiaohua, YANG Guijun, CHENG Zhanhui, Liu Liangyun
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 22, 2008. Observation items included: (1) Albedo by the shortwave radiometer in Huazhaizi desert No. 2 plot. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (2) BRDF of maize in Yingke oasis maize field by ASD (350-2 500 nm) from Beijing University and the observation platform of BNU make. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°; BRDF in Huazhaizi desert No. 2 plot by ASD from Institute of Remote Sensing Applications (CAS) and the observation platform of its own make, whose maximum height was 2m above the ground with the zenith angle -70°~70°. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, GUO Xinping, REN Huazhong, ZOU Jie, LIU Sihan, ZHOU Chunyan, FAN Wenjie, TAO Xin
The dataset of the drop spectrometer observations was obtained at an interval of 30 seconds in the cold region hydrology experimental area from Mar. 14 to Apr. 14, 2008. The site was chosen in A'rou (N39.06°, E100.44°, 3002m), Qilian county, Qinghai province. The data mainly included the raindrop grain size and the terminal velocity. Besides, dual polarized radar (X-band) parameters such as ZDR and KDR could be further developed based on those data. The observation was carried out within an area of 5400mm^2; the liquid grain diameter was from 0.2-5mm, and the solid grain diameter was from 0.2-25mm.
CHU Rongzhong, ZHAO Guo, HU Zeyong, ZHANG Tong, JIA Wei
The dataset of LST (land surface temperature) observed by the thermal camera (ThermaCAM SC2000 and ThermaCAM S60) at 24°×18° was obtained in the Yingke oasis, Huazhaizi desert steppe and Linze grassland foci experimental areas on May 20, 24,28 and 30, Jun. 1, 4, 16 and 29, Jul. 7, 8 and 11, 2008. Meanwhile, the optical photos were acquired in Yingke oasis maize field, Huazhaizi desert No. 1 and 2 plots, Huazhaizi desert maize field and Linze grassland. The dataset of ground truth measurement was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II, Landsat TM and ASTER.
HE Tao, KANG Guoting, REN Huazhong, YAN Guangkuo, WANG Haoxing, WANG Tianxing, LI Hua, Liu Qiang, XIA Chuanfu, ZHOU Chunyan, ZHOU Mengwei, CHEN Shaohui, YANG Tianfu
The dataset of ground truth measurements synchronizing with ASTER was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 28, 2008. Observation items included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Photosynthesis by LI-6400. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (5) the radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 using ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), 3 for maize canopy, the bare land and wheat canopy in Yingke oasis maize field, one for maize canopy in Huazhaizi desert maize field, and 2 for vegetation and the desert bare land in Huazhaizi desert No. 2 plot,at nadir at a time interval of one second. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format. (9) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (10) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), Huazhaizi desert maize field (the transect observation) and Huazhaizi desert No. 2 plot (the diagonal observation) by the handheld infrared thermometer (BNU and Institute of Remote Sensing Applications). Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived.
CHAI Yuan, CHEN Ling, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jianhua, SHU Lele, LI Li, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, ZHOU Mengwei, TAO Xin, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Biandukou foci experimental area from 11:10-13:30 on Mar. 17, 2008. Those provide reliable ground data for objects modelling and background modelling, remote sensing image simulation and scaling. Simultaneous with the satellite overpass, numerous ground data were collected, spectrum (ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band), the surface temperature, atmospheric parameters, the soil profile gravimetric moisture (0-1cm, 1-3cm and 3-5cm), the shallow layer frost depth and the soil roughness in C1, G1, W1, W2, B1 and B2, mostly the grassland, the wheat stubble land, the deep plowed land and the rape stubble land. The quadrates of 90m×90m and 450m×450m were compartmentalized into 81 subgrids of 10m×10m and 50m×50m. Based on the resolution of 30m×30m and 150m×150m, the influence of adjacent eight pixels on the center pixel was studied. Section lines of each subgrid were adopted to acquire the pixel spectrum, which were measured more than once for the mean value. The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Atmospheric parameters were measured by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S. Those provide reliable data for atmosphere correction of the same period in this area. The gravimetric soil moisture (samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Nine data files were included, TM data, CE318 data, B1, B2, C1, G1, W1 and W2.
CHANG Sheng, CHANG Yan, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of ground truth measurements synchronizing with EO-1 Hyperion was obtained in the Yingke oasis foci experimental area from Sep. 5 to Sep. 10, 2007 during the pre-observation period. It was carried out by the 3rd and 2nd sub-projects of CAS’s West Action Plan along Zhangye city-Yingke oasis-Huazhaizi, and on the very day of 10, one scene of Hyperion was captured. sampling plot time north latitude east longitude elevation notes 1 9:58 38°53′53.2″ 100°26′09.7″ 1500 cauliflower land east to the road 2 10:51 38°52′39.8″ 100°25′33.1″ 1510 cabbage land east to the road 3 11:35 38°52′39.0″ 100°25′34.6″ 1510 east to No. 2 sampling plot, maize and intercropping wheat reaped 4 12:24 38°51′53.0″ 100°25′08.0″ 1510 maize seed 5 13:08 38°51′54.2″ 100°25′09.5″ 1520 north to No. 4 sampling plot, maize and intercropping wheat reaped 6 14:40 38°51′23.5″ 100°24′45.0″ 1510 west to the road, maize seed, serious blights (red spider) 7 15:40 38°49′26.6″ 100°23′23.7″ 1540 intercrop land of sea buckthorn and beet 8 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land, rich of amaranth weeds 9 16:18 38°49′06.4″ 100°23′30.8″ 1540 beet land 10 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land with less weeds 11 10:30 38°48′28.3″ 100°24′11.4″ 1540 sea buckthorn seedling land west to the road 12 11:24 38°48′09.3″ 100°24′10.1″ 1550 sun flower land east to the road, intercropping wheat reaped 13 12:38 38°46′16.3″ 100°23′14.2″ 1600 dry rice land 14 12:45 38°46′16.2″ 100°23′14.0″ 1600 rape land 15 12:54 38°46′15.6″ 100°23′13.8″ 1600 buckwheat land 16 14:52 38°45′55.5″ 100°23′00.1″ 1610 maize (without intercrop) 17 15:28 38°45′57.5″ 100°22′28.3″ 1630 maize (without intercrop) 18 16:20 38°43′17.3″ 100°22′53.4″ 1730 gobi (Bassia dasyphylla and margarite dominate) 19 17:40 38°42′31.8″ 100°22′56.8″ 1780 gobi (Bassia dasyphylla and Sympegma regelii dominate) 20 10:27 38°36′25.1″ 100°20′33.2″ 2260 wheatgrass dominates 21 11:10 38°36′24.4″ 100°20′38.1″ 2260 abandoned composite land 22 11:30 2260 near site 22, wheatgrass and composite cenosis 23 bare land 24 13:09 38°38′46.3″ 100°23′08.5″ 2030 alfalfa land 25 14:39 38°44′30.8″ 100°22′41.0″ 1660 poplar 26 9:47 38°58′11.4″ 100°26′18.3″ 1460 rice land Observation items included: (1) quadrat surveys (2) LAI by LAI-2000 (3) ground object reflectance spectra by ASD FieldSpec Pro (350-2500nm)from Gansu Meteorological Administration (4) the land surface temperature and the canopy radiative temperature by the hand-held thermal infrared sensor (5) the photosynthesis rate by LI-6400 (6) the radiative temperature by ThermaCAM SC2000 (7) Atmospheric parameters by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S codes (8) chlorophyll consistency by portable SPAD Those provide reliable ground data for developing and validating retrieval meathods of biophysical parameters from EO-1 Hyperion images.
MA Mingguo, LI Xin, SU Peixi, DING Songchuang, GAO Song, YAN Qiaodi, ZHANG Lingmei, WANG Xufeng, Qian Jinbo, BAI Yunjie, HAO Xiaohua, Liu Qiang, Wen Jianguang, XIN Xiaozhou, WANG Xiaoping, HAN Hui
The dateset of sun photometer observations was obtained in the Biandukou foci experimental area from Mar. 7 to 17, 2008, simultaneous with MODIS and TM. Those provide reliable data for atmosphere correction of the same period in this area. Atmospheric parameters were measured by CE318. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired. Column water vapor can also be retrieved according to data in 936 nm. The dataset archived in txt files includes processed data on Mar. 7, 14 and 17 respectively.
SU Gaoli
The dataset of the drop spectrometer (PARSIVEL) observations was obtained at an interval of 30 seconds in the arid region hydrology experiment area from May 18 to Jul. 5, 2008. The site was chosen in Xiaoman township (38.86°N, 100.41°E, 1515m), Ganzhou district, Zhangye city, Gansu province. The data mainly included the raindrop grain size and the terminal velocity. Besides, dual polarized radar (X-band) parameters such as ZDR and KDR could be further developed based on those data. The sampling area of PARSIVEL was 5400mm^2; the liquid grain diameter was from 0.2-5mm, and the solid grain diameter was from 0.2-25mm.
CHU Rongzhong, ZHAO Guo, HU Zeyong, ZHANG Tong, JIA Wei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn