The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (GCC), phenological phase and fractional cover (FC). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the LAI measurements from the Daman superstation in the middle reaches of the Heihe integrated observatory network from June 11 to September 18 in 2018. The site (100.372° E, 38.856°N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. There are 3 observation samples, each of which is about 30m×30m in size, and the latitude and longitude ranges are (100.373297°E~100.374205°E, 38.857871°N~38.858390°N), (100.373918°E~100.373897°E, 38.854025°). N~38.854941°N), (100.368007°E~100.369044°E, 38.850678°N~38.851580°N). Five sub-canopy nodes and one above-canopy node are arranged in each sample. The LAI data is obtained from LAINet measurements following four steps: (1) the raw data is light quantum (level 0); (2) the daily LAI can be obtained using the software LAInet (level 1); (3) the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); (4) for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.
LIU Shaomin, Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the LAI measurements from the Sidaoqiao in the downstream of the Heihe integrated observatory network from June 16 to October 18 in 2018. The site was located in Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 870 m. There are 2 observation samples, around Sidaoqiao superstation (101.1374E, 42.0012N) and Mixed forest station (101.1335E, 41.9903N), each of which is about 30m×30m in size. Five sub-canopy nodes and one above-canopy node are arranged in each sample. The LAI data is obtained from LAINet measurements following four steps: (1) the raw data is light quantum (level 0); (2) the daily LAI can be obtained using the software LAInet (level 1); (3) the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); (4) for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
This is the LAINet dataset measured in the corn field at the Xiaoman irrigation district (from 25 June, to 24 August, 2012). The time used in this dataset is in UTC+8 Time. Instrument: LAINet- A wireless sensor network for leaf area index measurement, Beijing Normal University Measurement Mode: LAINet observation system is formed by 3 kinds of sensor nodes, they are respectively (1) node below the canopy, sensors up-looking are used for measure the transmitted radiation through the canopy, which are deployed horizontally; (2) node above canopy: sensors up-looking are used for measure the total sun incident radiation, which are deployed horizontally; (3) sink or router node, which is designed for receiving and transmitting data measured by the above node and below node. Data Processing: the original data obtained from sensors is received by sink nodes, and forms the original dataset in days after pre-processed. The observation for transmittance of the canopy is acquired by calculating the ratio of the radiation through the canopy and the total incident radiation above the canopy at different sun elevation angles during a day. The retrieval of LAI is based on the multi-angle transmittance data. LAINet dataset is composed of original LAI data, LAI data after calculating the mean value in 5 days interval and the longitude and latitude of the measurement nodes. All the data are stored in the format of Excel. As for the data after calculating the mean value in 5 days, we take the number of aggregation nodes as the name of the sheet. Data saved in a sheet is from an sink node which receives the measurement data from the child nodes. The original data records the LAI of every node in the observation day. In the sheet of two kinds of data above, the meaning of the column is as follows: DOY, node one, node two, …, and node N.
MA Mingguo
This dataset is the Fractional Vegetation Cover observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observations lasted for a vegetation growth cycle from May 2012 to September 2012 (UTC+8). Instruments and measurement method: Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. Details are described in the following: 0. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1. For row crop like corn, the plot is set to be 10×10 m2, and for the orchard, plot scale is 30×30 m2. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 2. The photographic method used depends on the species of vegetation and planting pattern: Low crops (<2 m) in rows in a situation with a small field of view (<30 ), rows of more than two cycles should be included in the field of view, and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. 3. High vegetation in rows (>2 m) Through the top-down photography of the low vegetation underneath the crown and the bottom-up photography beneath the tree crown, the FVC within the crown projection area can be obtained by weighting the FVC obtained from the two images. Next, the low vegetation between the trees is photographed, and the FVC that does not lie within the crown projection area is calculated. Finally, the average area of the tree crown is obtained using the tree crown projection method. The ratio of the crown projection area to the area outside the projection is calculated based on row spacing, and the FVC of the quadrat is obtained by weighting. 4. FVC extraction from the classification of digital images. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation.
MU Xihan, HUANG Shuai, MA Mingguo
This dataset is the FPAR observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 19 July, 2012 (UTC+8). Measurement instruments: AccuPAR (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: For corn, to measure the incoming PAR on the canopy, transmission PAR under the canopy, reflected PAR on the canopy, reflected PAR under the canopy. For orchard and white poplar forest, to measure the incoming PAR outside of the canopy, transmission PAR under the canopy. Corresponding data: Land cover, plant height, crop rows identification
MA Mingguo
The dataset includes the fractional vegetation cover data generated from the stations of crop land, wetland, Gebi desert and desert steppe in Yingke Oasis and biomass data generated from the stations of crop land (corn) and wetland. The observations lasted for a vegetation growth cycle from 19 May, 2012 to 15 September, 2012. 1. Fractional vegetation cover observation 1.1 Observation time 1.1.1 Station of the crop land: The observations lasted from 20 May, 2012 to 15 September, 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the station of crop land (corn) are 2013-5-20, 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.1.2 The other four stations: The observations lasted from 20 May, 2012 to 15 September, 2012 and in ten-day periods for each observation. The observation time for the crop land are 2013-5-20, 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.2 method 1.2.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1.2.2 Design of the samples Three and two plots with the area of 10×10 m^2 were measured for the station of the crop land and wetland, respectively. One plot with the area of 10×10 m^2 was measured for the other three stations. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 1.2.3 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the stations of crop land and wetland. For the station of the crop land, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other three stations, the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 1.2.4 Method for calculating the FVC The FVC calculation was implemented by the Beijing Normal University. The detail method can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 2. Biomass observation 2.1. Observation time 2.1.1 Station of the crop land: The observations lasted from 20 May 2012 to 15 September 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the crop land are 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.1.2 The station of wetland: The observations lasted from 20 May 2012 to 15 September 2012, and in ten-day periods for each observation. The observation time for the crop land are 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.2. Method Station of the crop land: Three plots were selected and three strains of corn for each observation were random selected for each plot to measure the fresh weight (the aboveground biomass and underground biomass) and dry weight. Per unit biomass can be obtained according to the planting structure. Station of the wetland: Two plots of reed with the area of 0.5 m × 0.5 m were random selected for each observation. The reed of the two plots was cut to measure the fresh weight (the aboveground biomass) and dry weight. 2.3. Instruments Balance (accuracy 0.01 g); drying oven 3. Data storage All observation data were stored in excel. Other data including plant spacing, row spacing, seeding time, irrigation time, the time of cutting male parent and the harvest time of the corn for the station of cropland were also stored in the excel.
GENG Liying, Jia Shuzhen, Li Yimeng, MA Mingguo
The data set include crop leaf stomatal conductance observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop leaf stomatal conductance, a key biophysical parameter, was observed as model parameter or a priori knowledge for crop growth model, or evapotranspiration estimation. 2) Measuring instruments Leaf porometer. 3) Measuring site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The crop leaf stomatal conductance for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the Super Station The crop leaf stomatal conductance at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. c. the Shiqiao sample site The crop leaf stomatal conductance at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.
Xu Fengying, Wang Jing, Huang Yongsheng, LI Xin, MA Mingguo
The dataset combined with crop phrenology data and field management data which were investigated near the 13 eddy covariance (EC) stations. 1.1 Objective of investigation Objectives of investigation is to supply assistant information for experiment on EC, meteorology, and biophysics parameter. 1.2 Investigation spots and items Investigation spots include Jiu She of Shiqiao village (EC3), Xiaoman southern road (EC16), Wu She of Five stars village (EC13), Wu She of Xiaoman village (EC14), Er She of Shiqiao village (EC5), Liu She of Zhonghua village (EC11), Liu She of Shiqiao village (EC2), Wu She of JinCheng village (EC7), EC6, Liu She of Jincheng village (EC8), Yi She of Kangning village (EC9), Er She of Kangning village (EC10), and Si She of Jingcheng village (EC12). Investigation items comprise crop type, crop name, seed time, seed type, plant span, row span, field area, germination time, three leaves period, seven leaves period, farming way, farming time, irrigation time, irrigation water volume, fertilization time, fertilization type, and fertilization rate. The time used in this dataset is in UTC+8 Time. 1.3 Data collection Data was collected by using ask-reply approach according to investigation tables.
GE Yingchun, Ma Chunfeng, LI Xin
The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the artificial oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included two main crops in the middle reaches of Heihe river: wheat and maize, which located in the town of Pingchuan in Linze and the Super Station of Wuxing, respectively. Observation periods lasted from mid-May to September. This dataset included the raw observation data and the pretreatment data of wheat and maize observed by LI-6400 during the observation periods. Objectives of observation: The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. Instrument and theory of the observation: (1) Measuring instrument: LI-6400XT Portable Photosynthesis System; (2) Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. Time and site of observation: (1) Observation site of the wheat: in the town of Pingchuan in Linze; Observation time: 2012-05-17,2012-06-08 to 2012-6-13; (2) Observation site of the maize: in the Super Station of Wuxing; Observation time: from 2012-05-19 to 2012-08-15. The time used in this dataset is in UTC+8 Time. Data processing: The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type + time”, every leaf was recorded 3 times, and then added a remark.
WANG Haibo
This dataset is the LAI observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 20 September 2012 (UTC+8). Measurement instruments: LAI-2000 (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: To measure the incoming sky radiation on the canopy firstly. Then the transmission sky radiation are mearued under the canopy for serveral times. The canopy LAI is retrieved by using the gap probability model.
Li Yun, Wang Yan, MA Mingguo
The data set include crop height observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the EC plots, the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop height, a key biophysical parameter, was observed for evapotranspiration estimation in regional scale and the retrieval of other biophysical parameters as well as the application in eco-hydrological models. 2) Measurement instrument: Steel tape. 3) Measurement site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The wheat height are measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the EC site Maize height at 14 EC site (EC-2,EC-3,EC-5,EC-6,EC-7,EC-8,EC-9, EC-10, EC-11, EC-12, EC-13, EC-14, EC-15, EC-16) are measured on 14, 21, 25 and 31 May, 7, 13, 23 and 28 June, 3, 13, 18 and 23 July, 3, 12 and 28 August. c. the super station Maize height at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. d. the Shiqiao sample site Maize height at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.
Wang Jing, Xu Fengying, Huang Yongsheng, LI Xin, MA Mingguo
The dataset contains vegetation type and plant structure in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI and SASI the middle reaches of the Heihe River Basin between 25 June and 6 August in 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Vegetation range in the middle reaches of the Heihe River Basin and survey route could be decided with the help of Google Earth. Wuxing village in Xiaoman town was selected to survey detailed and other places were investigated as far to reach as possible. Main methods were to write down the longitude and latitude, phenology of the plant structure, take photos for the vegetation. Dataset contains: longitude and latitude, vegetation type, area and phenology. Observation Place: CASI flight area in artificial oasis in the middle reaches, CASI stripe flight area in the middle reaches and Zhangye district. Date: From 25 June and 6 August in 2012.
Zhang Miao
The data set include crop biomass observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the EC plots, the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop biomass, a key biophysical parameter, was observed for calibration and validation of crop growth model and the retrieval of other biophysical parameters as well as the application in eco-hydrological models. 2) Measurement instrument: Electronic balance (±0.1g) and oven. 3) Measurement site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The wheat biomass for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the EC site Maize biomass at 14 EC site (EC-2,EC-3,EC-5,EC-6,EC-7,EC-8,EC-9, EC-10, EC-11, EC-12, EC-13, EC-14, EC-15, EC-16) are measured on 14, 21, 25 and 31 May, 7, 13, 23 and 28 June, 3, 13, 18 and 23 July, 3, 12 and 28 August. c. the super station Maize biomass at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. d. the Shiqiao sample site Maize biomass at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets.
Xu Fengying, Wang Jing, Ma Chunfeng, Huang Yongsheng, LI Xin, MA Mingguo
A land surface temperature observation system was set up in apple orchard near by the No.17 eddy covariance system of the MUlti-Scale Observation experiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). This observation site can offer in situ calibration data of apple trees for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large and homogeneous apple orchard in Zhangye Experiment Field, Gansu Academy of Agricultural Sciences. It’s 4 meters away from southwest of No.17 eddy covariance system, and observation height is 4.55 m. Crown size of observed apple tree is 4 m × 4 m. Underlying surface of observation site is mainly apple trees. The coordinates of this site: 38°50′41.70" N,100°22′11.40" E. Observation Instrument: The observation system consists of one SI-111 infrared radiometers (Campbell, USA) installed vertically downward to apple tree. Observation Time: This site operates from 3 August, 2012 to 27 September, 2012. Observation data laagered by every 1 minute uninterrupted. Output data contained sample data of every 1 minute. Accessory data: Land surface (apple tree) infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: Target_C_Avg, apple tree temperature @ 4.55 m (℃); SBT_C_Avg, body temperature of SI-111 sensor (℃). Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
MA Mingguo
The dataset includes the chlorophyll content of vegetation in different site which has different types of vegetation, acquired on 8 July, 2012, in order to validate the Chlorophyll products. Observation instruments: Sampling, Acetone extraction method Measurement methods: To analyze the influence height on chlorophyll , we select 12 different corn samples based on the height of corn. To compare the chlorophyll content of different types of vegetation, we also select 3 types of vegetation sample on the first EC tower, 1 beans sample near the seventeenth EC tower and 3 reed samples on wetland. A total of selected 19 different samples are analyzed in the laboratory in the College of Life Science, Hexi. We extract chlorophyll a, chlorophyll b, the content of total chlorophyll of selected samples. Dataset contents: Chlorophyll a, chlorophyll b, the content of total chlorophyll Measurement time: 8 July, 2012
Jia Shuzhen
This data includes the coverage data set of vegetation in one growth cycle in five stations of Daman super station, wetland, desert, desert and Gobi, and the biomass data set of maize and wetland reed in one growth cycle in Daman super station. The observation time starts from May 10, 2014 and ends on September 11, 2014. 1 coverage observation 1.1 observation time 1.1.1 super station: the observation period is from May 10 to September 11, 2014. Before July 20, the observation is once every five days. After July 20, the observation is once every 10 days. A total of 17 observations are made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 1.1.2 other four stations: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; Other four stations: May 10, 2014, May 20, 2014, May 30, 2014, June 10, 2014, June 20, 2014, June 30, July 10, 2014, July 20, August 5, 2014, August 17, 2014, September 11, 2014 1.2 observation method 1.2.1 measuring instruments and principles: The digital camera is placed on the instrument platform at the front end of the simple support pole to keep the shooting vertical and downward and remotely control the camera measurement data. The observation frame can be used to change the shooting height of the camera and realize targeted measurement for different types of vegetation. 1.2.2 design of sample Super station: take 3 plots in total, the sample size of each plot is 10 × 10 meters, take photos along two diagonal lines in turn each time, take 9-10 photos in total; Wetland station: take 2 sample plots, each plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 3 other stations: select 1 sample plot, each sample plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 1.2.3 shooting method For the super station corn and wetland station reed, the observation frame is directly used to ensure that the camera on the observation frame is far higher than the vegetation crown height. Samples are taken along the diagonal in the square quadrat, and then the arithmetic average is made. In the case of a small field angle (< 30 °), the field of view includes more than 2 ridges with a full cycle, and the side length of the photo is parallel to the ridge; in the other three sites, due to the relatively low vegetation, the camera is directly used to take pictures vertically downward (without using the bracket). 1.2.4 coverage calculation The coverage calculation is completed by Beijing Normal University, and an automatic classification method is adopted. For details, see article 1 of "recommended references". By transforming RGB color space to lab space which is easier to distinguish green vegetation, the histogram of green component A is clustered to separate green vegetation and non green background, and the vegetation coverage of a single photo is obtained. The advantage of this method lies in its simple algorithm, easy to implement and high degree of automation and precision. In the future, more rapid, automatic and accurate classification methods are needed to maximize the advantages of digital camera methods. 2 biomass observation 2.1 observation time 2.1.1 corn: the observation period is from May 10 to September 11, 2014, once every 5 days before July 20, and once every 10 days after July 20. A total of 17 observations have been made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 2.1.2 Reed: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2 observation method Corn: select three sample plots, and select three corn plants that represent the average level of each sample plot for each observation, respectively weigh the fresh weight (aboveground biomass + underground biomass) and the corresponding dry weight (85 ℃ constant temperature drying), and calculate the biomass of unit area corn according to the plant spacing and row spacing; Reed: set two 0.5m × 0.5m quadrats, cut them in the same place, and weigh the fresh weight (stem and leaf) and dry weight (constant temperature drying at 85 ℃) of reed respectively. 2.3 observation instruments Balance (accuracy 0.01g), oven. 3 data storage All the observation data were recorded in the excel table first, and then stored in the excel table. At the same time, the data of corn planting structure was sorted out, including the plant spacing, row spacing, planting time, irrigation time, except for the parent time, harvesting time and other relevant information.
YU Wenping, GENG Liying, Li Yimeng, TAN Junlei, MA Mingguo
The data set include crop leaf chlorophyll content observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the EC plots, the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop leaf chlorophyll content, a key biophysical parameter, was observed as model parameter or a priori knowledge for canopy radiative transfer model or eco-hydrological models. 2) Measuring instruments SPAD. 3) Measuring site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The wheat leaf chlorophyll content for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the EC site The maize leaf chlorophyll content at 14 EC site (EC-2,EC-3,EC-5,EC-6,EC-7,EC-8,EC-9, EC-10, EC-11, EC-12, EC-13, EC-14, EC-15, EC-16) are measured on 14, 21, 25 and 31 May, 7, 13, 23 and 28 June, 3, 13, 18 and 23 July, 3, 12 and 28 August. c. the Super Station The maize chlorophyll content at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. d. the Shiqiao sample site The maize chlorophyll content at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.
Xu Fengying, Wang Jing, Huang Yongsheng, LI Xin, MA Mingguo
The dataset include the planting structure and area information of major crops in 11 districts and counties of the Heihe River Basin from 2000 to 2012 (grain, wheat, corn, potato, soybean, cotton, oil, vegetables, etc.)
DENG XiangZheng
We produced surface photosynthetic effective radiation (PAR), solar radiation (SSR) and net radiation (NR) products with 1KM resolution in the heihe basin in 2012.The temporal resolution ranges from instantaneous to hourly and daily.Day-by-day ancillary data were also produced, including aerosol optical thickness, moisture content, NDVI, snow cover, and surface albedo.Among them, PAR and SSR use the method of lookup table to directly invert by combining the stationary weather satellite and polar orbit satellite MODIS product.NR was calculated by analyzing the relationship between net short-wave and net surface radiation.Hourly instantaneous products are weighted by average and integral to obtain hourly and daily cumulative products.
HUANG Guanghui
The data set contains the data of thermal diffusion fluid flow meter in the hydrometeorological observation network from January 1 to December 31, 2015. The study area is located in huyang forest, ejin banner, alxa league, lower reaches of heihe, Inner Mongolia autonomous region.According to the different height and diameter at breast height of iminqak, choose install Thermal diffusion flow meter sample tree (Thermal Dissipation SAP flow velocity Probe, TDP), domestic TDP pin type Thermal diffusion plant flow meter, model for TDP30.The TDP1 point and TDP2 point of sample plots were set in the vicinity of mixed forest station and populus populus station, respectively.Sample tree height from high to low in turn for TDP2 (16.4 meters, 18.3 meters, 16.9 meters), TDP1 (12.5 meters, 13 meters, 14 meters), diameter at breast height order from large to small is TDP1 (48 cm, 41.6 cm, 46.6 cm), TDP2 (33.8 cm, 38.5 cm, 42.3 cm), density of TDP1 respectively (0.0158 per square meter) tree, TDP2 (0.0116 per square meter), to represent the whole area of populus euphratica transpiration measurement.Two sets of probes are installed in each sample tree, with a height of 1.3 meters and a direction of east and west of the sample tree. The original observation data of TDP is the temperature difference between the probes, and the collection frequency is 10s, with an average output of 10 minutes.The published data are calculated and processed trunk flow data, including flow rate V (cm/h), flux Fs (cm3/h) and daily transpiration Q (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Qiao et al. (2015) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes observational data of sap flow from 14 June to 21 September, 2012. The study area was located in the irrigation area within the middle reaches of the Heihe River Basin, China. Sample trees were selected for installing TDP (thermal dissipation sap flow velocity probe) instruments according to their height and diameter at breast height (DBH); only Popolusgansuensis trees were selected in this study. The TDP instrument is made in China; the model type was TDP30. There were 3 TDP observation sites, i.e., TDP-1, TDP-2 and TDP-3, which were located near the LAS4_S, EC6 and EC8 sites, respectively. The order of tree heights was TDP-2 > TDP-1 > TDP-3, and the order of DBH was TDP-2 > TDP-3 > TDP-1. At each site, 3 representative trees were selected to measure the sap flow. Three TDPs were mounted on the stem of each tree, one each for the southeast, southwest and north directions; the mounting height is 1.3 meters. Each TDP had two probes. The raw TDP data included the temperature difference between the two probes at a frequency of 30 s. The released data include the 10 minute-averaged sap flow rate (cm/h), sap flow flux (cm^3/h), and daily transpiration (mm/d). The sap flow rate and the sap flow flux were calculated according to the temperature difference between the two probes; the shelter-forest transpiration per unit area (Q) was calculated based on the area of shelterbelts and density of Popolusgansuensis trees at each site. The data preprocessing steps included the following. (1) Unphysical data were excluded. (2) Missing data were filled with -6999. (3) Suspicious data, which were most likely caused by probe failure, were marked in red; confirmed bad data were excluded. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Qiao et al. (2015) (for data processing) in the Citation section.
LIU Shaomin, LI Xin
This dataset includes 5 sub-datasets obtained from measurements in the flux observing matrix at observing site No.15 (the Daman superstation) and 13. Specifically, the sub-datasets include the following: (1) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic and flux ratio measurements from site No.15 from 27 May to 21 September in 2012, (2) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 from 27 May to 21 September 2012, (3) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic ratios at site No.13 when airborne surveys occurred, and (4) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No.13 and 15 when airborne surveys occurred, (5) a dataset that contains the ratios of evaporation and transpiration to evapotranpiration at site No.15. The experiment area was located in a corn cropland in the Daman irrigation district of Zhangye, Gansu Province, China. The positions of observing sites No.15 and 13 were 100.3722° E, 38.8555° N and 100.3785° E, 38.8607° N, respectively, with an elevation of 1552.75 m above sea level. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 were continuously measured using an in situ observation system. The system consisted of an H218O, HDO and H2O analyzer (Model L1102-i, Picarro Inc.), a CTC HTC-Pal liquid auto sampler (LEAP Technologies) and a multichannel solenoid valve (Model EMT2SD8 MWE, Valco Instruments CO. Inc.). The heights of the two intakes were 0.5 and 1.5 m above the corn canopy. The water vapor D/H and 18O/16O isotopic ratio analyzer recorded signals at 0.2 Hz; data were recorded for 2 minutes per intake. The data were block-averaged to hourly intervals. The sampling frequency of soil and xylem at site No. 15 was 1-3 days. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.13 were measured using a cold traps/mass spectrometer. The sampling frequency of atmospheric water vapor, soil water and xylem water at site No.13 was the same as that of the airborne surveys. Briefly, the Picarro analyzer measurements were calibrated during every 3 h switching cycle using a two-point concentration interpolation procedure in which the water vapor mixing ratio was dynamically controlled to track the ambient water vapor mixing ratio. Possible delta stretching effects were not considered. A schematic diagram of the Picarro analyzer and its operation principles and calibration procedure are described elsewhere in the literature (Huang et al., 2014; Wen et al. 2008, 2012). The dataset of atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Number (available record number), δD for r1 (δD for the lower intake, ‰), δD for r2 (δD for the higher intake, ‰), δ18O for r1 (δ18O for the lower intake, ‰), δ18O for r2 (δ18O for the higher intake, ‰), vapor mixing ratio for r1 (vapor mixing ratio for the lower intake, mmol/mol), vapor mixing ratio for r2 (vapor mixing ratio for the higher intake, mmol/mol), δET_D (δD of evapotranspiration, ‰), and δET_18O (δ18O of evapotranspiration, ‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; soil with male corns (F)=3; Xylem=4), δD (‰), and δ18O (‰). The dataset for the ratio of soil evaporation and transpiration to the evapotranspiration at site 15 includes the following variables: Timestamp (time, timestamp without time zone), E/ET (ratio of soil evaporation to the evapotranspiration, %), and T/ET (ratio of transpiration to the evapotranspiration, %). The mean (±one standard deviation) ratio of transpiration to evapotranspiration was 86.7±5.2% (the range was 71.3 to 96.0%). The mean (±one standard deviation) ratio of soil evaporation to the evapotranspiration was 13.3 ±5.2% (the range was 4.0 to 28.7%). The dataset of atmospheric water vapor D/H and 18O/16O isotopic ratio at site No. 13 when airborne surveys occurred includes the following variables: Timestamp1 (start time, timestamp without time zone), Timetamp2 (end time, timestamp without time zone), Height (observation height, cm), δD (‰), and δ18O (‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No. 13 and 15 when airborne surveys occurred include the following variables, Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; Xylem=4), δD (‰), δ18O (‰), and Location (observing site 13 or 15) . The missing measurements were replaced with -6999. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Wen et al. (2016) (for data processing) in the Citation section.
WEN Xuefa, LIU Shaomin, LI Xin
The data set contains the observation data of thermal diffusion fluid flow meters at the downstream mixed forest station and eupoplar forest station of the hydrometeorological observation network from January 1 to December 31, 2014. La shan au in the study area is located in the Inner Mongolia autonomous region of mesozoic-cenozoic in iminqak, according to the different height and diameter at breast height of iminqak, choose sampling tree installation TDP (Thermal Dissipation SAP flow velocity Probe, Thermal diffusion flow meter), domestic TDP pin type Thermal diffusion stem flow meter, the model for TDP30.The sample sites are TDP1 point and TDP2 point respectively, which are located near the mixed forest station and populus populus station.The height of the sample tree is TDP2 and TDP1 from high to low, and the diameter of the chest is TDP1 and TDP2 from large to small, so as to measure the trunk fluid flow on behalf of the whole area.The installation height of the probe is 1.3 meters and the installation orientation is due east and west of the sample tree. The original observation data of TDP is the temperature difference between probes, which is collected once for 10s and the average output period is 10 minutes.The published data are calculated and processed trunk flow data, including flow rate (cm/h), flux (cm3/h) and daily transpiration (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;Among them, the data of TDP2 was missing due to power supply problems from 1.1-2.8 days, and the data of the third group of probes was missing from 2.8-3.13 days due to the problems of the third group of probes.(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Qiao et al.(2015) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The EC150 open circuit eddy covariance observation system was set up in the typical Populus euphratica community near ulantuge of Ejina oasis in the lower reaches of Heihe River. The water and heat fluxes of Populus euphratica community from July 2013 to September 2014 were systematically observed.
CHEN Yaning
一. Data overview This data interchange is the second data interchange of "genomics research on drought tolerance mechanism of typical desert plants in heihe basin", a key project of the major research program of "integrated research on eco-hydrological processes in heihe basin".The main research goal of this project is a typical desert sand Holly plants as materials, using the current international advanced a new generation of gene sequencing technology to the whole genome sequence and gene transcription of Holly group sequence decoding, so as to explore related to drought resistance gene and gene groups, and transgenic technology in model plants such as arabidopsis and rice) verify its drought resistance. 二, data content 1.Sequencing of the genome and transcriptome of lycophylla SPP. The genome size of Mongolian Holly was about 926 Mb, GC content 36.88%, repeat sequence proportion 66%, genome heterozygosity rate 0.56%, which indicated that the genome has many repeat sequences, high heterozygosity and belongs to a complex genome.Based on the predicted sequence results, we subsequently carried out in-depth sequencing of the genome of lysiopsis SPP. The obtained data were assembled to obtain a 937 Mb genome sequence (table 1), which was basically the same as the predicted genome size.Through to the sand Holly transcriptome sequencing and sequence assembly (table 2), received more than 77000 genes coding sequence (Unigene), these sequences are comments found that most of the gene sequence and legumes and soybean, garbanzo beans and bean has a higher similarity (figure 1), consistent with the fact of sand ilex leguminous plants. 一), and the sand Holly is a leguminous plants consistent with the fact. 2.Discovery of simple repeat sequence (SSR) molecular markers of sand Holly: There is a transcriptome data set of sand Holly in the network public database, and the sample collection site is zhongwei city, ningxia.But this is the location of the project team samples in minqin county, gansu province, in order to study whether this sand in different areas of the Holly sequence has sequence polymorphism, we first identify the minqin county plant samples in the genomes of simple sequence repeat (SSR) markers (table 3), and then, compares the transcriptome sequences of plant sample, found in part of SSR molecular marker polymorphism (table 4), these molecular markers could be used for the species of plant genetic map construction, QTL mapping and genetic diversity analysis in the study. 三, data processing instructions Sample collection place: minqin county, gansu province, latitude and longitude: N38 ° 34 '25.93 "E103 ° 08' 36.77".Genome sequencing: a total of 8 genomic DNA libraries of different sizes were constructed and determined by Illumina HiSeq 2500 instrument.Transcriptome sequencing: a library of 24 transcriptome mrnas was constructed and determined by Illumina HiSeq 4000. 四, the use of data and meaning We selected a typical desert plant as the research object, from the Angle of genomics, parse the desert plant genome and transcriptome sequences, excavated its precious drought-resistant gene resources, and to study their drought resistance mechanism of favorable sand Holly this ancient and important to the utilization of plant resources, as well as the heihe river basin of drought-resistant plant genetic breeding, ecological restoration and sustainable development.
HE Junxian, FENG Lei
According to the sample survey data, in August 2013, 30 forest plots were set up in the Tianlaochi watershed, with a plot size of 10 m×20 m. The long side of the plot was parallel to the slope of the hillside, including 26 blocks of Picea crassifolia forest. 2 blocks of Sabina Przewalsskii forest and 2 mixed forests of Picea and Sabina. In the plot, the diameter of the breast of each tree (the diameter of the trunk at a height of 1.3 m) is measured by a diameter tape, and the height of each tree and the height under the branches (the height of the first live branch at the lower end of the canopy) is measured by a hand-held ultrasonic altimeter. The north-south direction and the east-west crown width are measured with a tape measure, and the sample site is positioned by differential GPS. The parallel version of HASM-AD algorithm is used to simulate the classified LIDAR point cloud data. DEM is generated from ground points, DSM is generated from all points, and the height of surface features is obtained by differential operation between DSM and DEM. In forest area, it is called Canopy Height Model (CHM). A circular window with a given search radius is used to find the local maximum value on CHM. If the central pixel value is the maximum value, it is determined as the crown vertex. The pixel attribute value of the tree vertex is the tree height, and the spatial resolution is 1m.
YUE Tianxiang, WANG Yifu
This data is the ASTER fractional vegetation cover in a growth cycle observed in the Yingke Oasis Crop land. Data observations began on May 30, 2012 and ended on September 12. Original data: 1.15m resolution L1B reflectivity product of ASTER 2.Vegetation coverage data set of the artificial oasis experimental area in the middle reaches Data processing: 1.Preprocessing of ASTER reflectance products to obtain ASTER NDVI; 2.Through the NDVI-FVC nonlinear transformation form, the ASTER NDVI and the ground measured FVC are used to obtain the conversion coefficients of NDVI to FVC at different ASTER scales. 3.Apply this coefficient to the ASTER image to obtain a vegetation coverage of 15m resolution; 4.Aggregate 15m resolution ASTER FVC to get 1km ASTER FVC product
HUANG Shuai, MA Mingguo
The evapotranspiration and soil evapotranspiration of lycium rubra and red sand of small shrubs in typical desert weather were observed by using infrared gas analyzer to measure water vapor flux. The measurement system consists of li-8100 closed-circuit automatic measurement of soil carbon flux (li-cor, USA) and an assimilation box designed and manufactured by Beijing ligotai technology co., LTD. Li-8100 is an instrument produced by li-cor for soil carbon flux measurement. It USES an infrared gas analyzer to measure the concentration of CO2 and H2O.The length, width and height of the assimilation box are all 50cm.The assimilation box is controlled by li-8100. After setting up the measurement parameters, the instrument can run automatically.
SU Peixi
The experimental data of Yingke Daman in Heihe River Basin is supported by the key fund project of Heihe River plan, "eco hydrological effect of agricultural water saving in Heihe River Basin and multi-scale water use efficiency evaluation". Including: soil bulk density, soil water content, soil texture, corn sample biomass, cross-section flow, etc Data Description: 1. Sampling location of Lai and aboveground biomass: Yingke irrigation district; sampling time: May 2012 to September 2012; Lai and aboveground biomass of maize were measured by canopy analyzer (lp-80), and aboveground biomass was measured by sampling drying method; sample number: 16. 2. Soil texture: Sampling location: Yingke irrigation district and Shiqiao Wudou Er Nongqu farmland in Yingke irrigation district; soil sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm; sampling time: 2012; measurement method: laboratory laser particle size analyzer; sample number: 38. 3. Soil bulk density: Sampling location: Yingke irrigation district and Daman irrigation district; sampling depth of soil bulk density is 100 cm, sampling levels are 0-50 cm and 50-100 cm respectively; sampling time: 2012; measurement method: ring knife method; number of sample points: 34. 4. Soil moisture content: this data is part of the monitoring content of hydrological elements in Yingke irrigation district. The specific sampling location is: Shiqiao Wudou Er Nongqu farmland in Yingke Irrigation District, planting corn for seed production; soil moisture sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm Methods: soil drying method and TDR measurement; sample number: 17. 5. Cross section flow: Sampling location: the farmland of Wudou Er Nong canal in Shiqiao, Yingke irrigation district; measure the flow velocity, water level and water temperature of different canal system sections during each irrigation, record the time and calculated flow, monitor once every 3 hours until the end of irrigation; sampling time: 2012.5-2012.9; measurement method: Doppler ultrasonic flow velocity meter (hoh-l-01, Measurement times: Yingke irrigation data of four times.
HUANG Guanhua, JIANG Yao
In the late June and early July of 2014, the dominant species of desert plants in the lower reaches of Heihe River, Lycium barbarum and Sophora alopecuroides, were selected. Using the LI-6400 portable photosynthesis system (LI-COR, USA), the photosynthetic and water physiological characteristics of desert plants were measured and analyzed.
SU Peixi
The leaf area of five typical species of jinjier, jilialu, jinlumei, huangxiaoba and Ganqing jinjier in Dayekou watershed of Qilian Mountain was measured by LAI-2200 canopy analyzer.
LIU Xiande
In the previous project, three different types of desert investigation and observation sites in the lower reaches of Heihe River were set up. Different kinds of desert plants with the same average growth and size as the observation site were selected for the above ground biomass and underground biomass total root survey. The dry weight was the dry weight at 80 ℃, and the root shoot ratio was the dry weight ratio of the underground biomass to the aboveground biomass. Species: Elaeagnus angustifolia, red sand, black fruit wolfberry, bubble thorn, bitter beans, Peganum, Tamarix and so on.
SU Peixi
Vegetation index (NDVI) can be used to detect vegetation growth state, vegetation coverage and eliminate some radiation errors. The data set is the NDVI product data synthesized by MODIS in 500 meters and 16 days in the black river basin from 2000 to 2010 after graphic processing, and the no-value zone is -32768.The coordinate system is the longitude and latitude projection, and the spatial range is 96.5E -- 102.5E, 37.5N -- 43N.The data format is GEOTIFF.
WANG Zhongjing
In this project, Ammopiptanthus mongolicus, a typical desert plant, is taken as the research object. Through optimizing the protein extraction and purification system of Ammopiptanthus mongolicus, IEF and 2-D two-dimensional electrophoresis techniques are used to obtain soluble protein electrophoresis maps of Ammopiptanthus mongolicus, and protein spots differentially expressed under drought stress are analyzed and obtained, which provides technical guarantee for subsequent mass spectrometry to identify protein functions and construct Ammopiptanthus mongolicus water stress response network.
SU Yanhua
All data in this data set are original data, including meteorological and soil moisture content, stem sap flow, water potential of plant tissue, isotope characteristics of atmospheric and humidified water vapor, fluorescence tracer image, plant photosynthetic fluorescence, and basic data of five desert plants, Tamarix chinensis, Haloxylon ammodendron, Bawang, Nitraria tangutorum and red sand, which are related to field and indoor control experiments Because of the data of expression regulation. 1. Isotopic data of Tamarix chinensis. After humidifying for 1 hour, 2 hours and 3 hours, the tissue samples of indoor and outdoor plants of plexiglass were collected at the same time. The samples were put forward and processed by low-temperature vacuum distillation glass water extraction system, and then used euro The isotopic data were measured by ea3000 element analyzer and isoprime gas stability mass spectrometer. Tamarix Tamarix samples were collected from Sitan village, Jingtai County, including humidification and control samples. The variation data of isotopic composition can be used to determine the way and amount of water vapor absorbed by plant leaves. 2. Fluorescence section photo data: all the data in this data set are original data, including the structural photos under high-power microscope of Tamarix, Haloxylon ammodendron, Nitraria, Bawang, Hongsha and other desert plant leaves in Sitan village of Jingtai County and Ejin Banner. The specific method is as follows: apply fluorescent dye to the surface of desert plant leaves before humidification, collect plant leaves and stems after humidification for 1 hour, 2 hours and 3 hours, put them in liquid nitrogen, take them back to the laboratory, observe and take photos with fluorescence microscope. It can be used to analyze the tissue and organs of water absorption by desert plant leaves and the direction and path of water migration in plants. 3: Gene transcription and expression data: transcription and expression data of Tamarix chinensis, data collection time: May 25, 2014, location: Sitan village, Jingtai County, Gansu Province, data analysis platform: lllumina hisep TM 2000 platform, obtained by transcriptome analysis of baimaike company. 4. Photosynthetic and fluorescence data: photosynthetic and fluorescence parameters measured by photosynthetic apparatus in the field (Sitan village and Ejin Banner, Jingtai County). 5. Sap flow and environmental data: all data are original data. Sap flow data of desert plants measured by stem flow meter, including Tamarix chinensis, Haloxylon ammodendron, Nitraria tangutorum, red sand and other desert plants (Sitan village, Jingtai County and Ejin Banner), and environmental data monitored by automatic weather station, including temperature and humidity.
XIAO Honglang
The leaves and roots of ammopiptanthus mongolicus were sequenced by Hiseq2000 with high throughput transcriptome, and 44,959 unigene were found. Through database comparison, 43,192 unigene were annotated. It was found that under drought treatment, 1035 and 1210 genes were differentially expressed in leaves and roots (the expression level was up-regulated or down-regulated by more than 2 times respectively). These differentially expressed genes are mainly related to material transportation, stress response, metabolic process, and molecular structural activity. 40 differentially expressed (specific) response genes under drought stress were identified. By analyzing the transcription factors of Ammopiptanthus mongolicus, we also found that Ammopiptanthus mongolicus contains 50 transcription factor families and 1575 transcription factors. The expression of 7 transcription factors increased and 50 decreased in leaves. In the roots, 11 rose and 33 fell.
SU Yanhua
Through the observation of tissue sections of root system, stem and leaf of Ammopiptanthus mongolicus, it is found that Ammopiptanthus mongolicus has morphological characteristics of efficient absorption, transportation and storage of water. Through the study of physiology and biochemistry of Ammopiptanthus mongolicus, the physiological and molecular mechanism of Ammopiptanthus mongolicus adapting to water stress through osmotic adjustment under drought stress was preliminarily confirmed. Through the study of physiological characteristics of Ammopiptanthus mongolicus under drought conditions, the change rule of proline accumulation with the process of drought stress was found, which may participate in the regulation mechanism of Ammopiptanthus mongolicus adapting to water stress as an important osmotic regulator. Furthermore, 7 full-length genes involved in proline synthesis, metabolism and transport of Ammopiptanthus mongolicus were cloned and obtained.
SU Yanhua
The survey data of vegetation quadrat in the middle reaches of Heihe River consists of the field survey data in 2013 and 2014, including the vegetation and soil data of the survey quadrat. The data of each survey sample includes the following information: sample longitude and latitude, sample size, elevation, sample overview, plant name, plant height, crown width, coverage, total coverage, number of trees, plant spacing, row spacing, large row spacing, DBH. The soil is divided into 6 layers according to 0-100cm below the ground, which are 0-10cm, 10-20cm, 20-40cm, 40-60cm, 60-80cm and 80-100cm respectively.
WANG Zifeng, XU Zongxue, ZHANG Shurong
The data set of atmospheric water vapor absorption and utilization of desert plants, all of which are original data, including the liquid flow and environmental data of wild desert plants (Sitan village and Ejina Banner, Jingtai County), such as Tamarix, Bawang, Baici, Hongsha, etc., including the data of meteorology, photosynthesis, fluorescence and leaf surface humidity, as well as the data of gene transcriptome and expression regulation.
XIAO Honglang
This data is a vegetation map of the upper reaches of Yingluoxia in the main stream of Heihe River, with a scale of 1:100,000 and an area of about 10,000 square kilometers. The data format is GIS vector format, which meets the data input requirements of eco-hydrological model. Map modification is still needed before publication. This version is version 2.0, and it is to be modified after compared with the survey data of the upstream sample belts of Heihe Project. Based on the "1:1 million Chinese Vegetation Map", the altitude, aspect and other terrains of the upper reaches of the Heihe River (based on ASTER GDEM) are analyzed in detail, combined with field survey data, literature, TM, ETM+ images, and Google Earth, etc., and with the optimization of the group boundary of "1:1 million Chinese Vegetation Map", this data is obtained. This data adjusts the type boundary of the 1:1 million vegetation map to a large extent, and is much more consistent with the altitude and aspect. This data can be directly used and edited in Arc GIS and its compatible software.
ZHENG Yuanrun
Spectral reflectance observation was carried out for the typical underlying surface and black and white cloth in the low reaches of the Heihe River Basin during the aviation flight experiment in 2014, which will provide basic data set for the preprocessing of the flight data. 1. Observation Instrument PRS-3500 portable spectrometer, with the spectral range is 350-2500 nm, and the reference board. 2. Samples and observation methods The samples including the black and white cloth, the cantaloupe, the Tamarix chinensis, the Populus euphratica, the reeds, the weeds, the Karelinia caspica, the sandy soil, the gobi, the Sophora alopecuroides and so on. Reflectance of the reference board was measure vertically for once and then objective reflectance were measured for five times for each observation objective. 3. Observation time The typical underlying surface vegetation observation was on days of 24 July, 27 July, 31 July, 2014. The black and white cloth simultaneous observation was on 29 July, 2014. 4. Data storage The observation recorded data were stored in excel and the original spectral data were stored in *.sed files derived from the spectrometer, which can be opened by the matched software of the spectrometer or by a txt.
GENG Liying, Li Yimeng
The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the natural oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included the main vegetation type in the lower reaches of Heihe river: Populus forest, which located in the Populus forest station and the mixed forest station of Ejinaqi. Observation periods lasted from 2014-07-24 to 2014-07-31. This dataset included the raw observation data of the Populus forest observed by LI-6400 during the observation periods. 1) Objectives of observation The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. 2) Instrument and theory of the observation Measuring instrument: LI-6400XT Portable Photosynthesis System. Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. 3) Time and site of observation Observation site in the Populus forest station. Observation time: 2014-07-24 Observation site in the mixed forest station. Observation time: From 2014-07-25 to 2014-07-31. 4) Data processing The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type”.
WANG Haibo
The fractional vegetation cover observation was carried out for the typical underlying surface in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples method Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the low reaches. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. 3. Observation methods 3.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 3.2 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the Tamarix chinensisi and reeds. For the Tamarix chinensisi and reeds, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other vegetation , the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 3.3 Method for calculating the FVC The detail method of the FVC calculation can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 4 Data storage The observation recorded data were stored in excel and the original FVC data were stored in photos.
Guo Dong, WANG Haibo, Zhou Shengnan
LAI observation was carried out for the typical underlying surface in the lower reaches of Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples and observation methods Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the downstream. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. LAI data were calculated according to the transmittance derived from an A value (above-canopy readings) and four B values (below readings). More than two LAI values were obtained for each sample. At the same time, the heights of the vegetation in each sample were measured. 3. Observation instrument LAI 2200 4. Data storage The observation recorded data were stored in excel and the original LAI data were stored in txt files.
SONG Yi, Li Yimeng
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 1, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert No. 1 plot by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0; from Institute of Remote Sensing Applications), observing straight downwards at intervals of 1s in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (3) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (4) The reflectance spectra by ASD in Yingke oasis maize field (350-2500nm , from BNU, the vertical canopy observation and the transect observation), and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS, the NE-SW diagonal observation at intervals of 30m). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (6) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 1 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (7) Atmospheric parameters on the playroom roof at the resort by CE318 (produced by CIMEL in France). The underlying surface was mainly composed of crops and the forest (1526m high). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Narrow channel emissivity of the bare land and vegetation by the W-shaped determinator in Huazhaizi desert No. 1 plot. Four circumstances should be considered for emissivity, with the lid plus the au-plating board, the au-plating board only, the lid only and without both. Data were archived in Word.
CHEN Ling, HE Tao, REN Huazhong, REN Zhixing, YAN Guangkuo, ZHANG Wuming, XU Zhen, LI Xin, GE Yingchun, SHU Lele, JIANG Xi, HUANG Chunlin, GUANG Jie, LI Li, LIU Sihan, WANG Ying, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, CHEN Shaohui, LIANG Wenguang, LI Xiaoyu, CHENG Zhanhui, Liu Liangyun, YANG Tianfu
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature by the handheld radiometer (BNU) in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (2) The component temperature of maize and wheat by the handheld radiometer in Yingke oasis maize field, Yingke wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (4) The radiative temperature and the canopy multi-angle radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (2 instruments for maize canopy), Huazhaizi desert maize field (only one for maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). The thermal infrared remote sensing calibration was carried out in the resort plot. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (5) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (6) Reflectance spectra of Yingke oasis maize field (350-2500nm, from Institute of Remote Sensing Applications) and resort calibration site (350-2500nm, from Beijing Univeristy) by ASD (Analytical Sepctral Devices); BRDF by the self-made observation platform. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (7) Atmospheric parameters at the resort calibration site by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Soil moisture (0-40cm) by the cutting ring, the soil temperature by the thermocouple thermometer, roughness by the self-made roughness board and the camera in Huazhaizi desert No. 1 plot. Sample points were selected every 30m along the diagonals. Data were all archived in Excel format. (9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (10) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Word. LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format of May 31.
CHAI Yuan, CHEN Ling, HE Tao, KANG Guoting, QIAN Yonggang, REN Huazhong, REN Zhixing, WANG Haoxing, ZHANG Wuming, ZOU Jie, GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, GUANG Jie, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, LIANG Wenguang, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn