The data set includes soil pH data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil bulk density data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil organic carbon concentrations data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
Soil bulk density, porosity, water content, water characteristic curve, saturated hydraulic conductivity, particle analysis, infiltration rate, and sampling point location information in the upper reaches of the Heihe River Basin. 1. The data is for 2014 supplementary sampling for 2012, using the ring knife to take the original soil; 2. The soil bulk density is the dry bulk density of the soil and is measured by the drying method. The original ring-shaped soil sample collected in the field was thermostated at 105 ° C for 24 hours in an oven, and the soil dry weight was divided by the soil volume (100 cubic centimeters) , unit: g/cm 3 . 3. Soil porosity is obtained according to the relationship between soil bulk density and soil porosity; 4. Soil infiltration analysis data set, the data is the field experimental measurement data from 2013 to 2014. 5. The infiltration data is measured by “MINI DISK PORTABLE TENSION INFILTROMETER”, and the approximate saturated hydraulic conductivity under a certain negative pressure is obtained. 6. Soil particle size data was measured at the Grain Granulation Laboratory of the Key Laboratory of the Ministry of Education of Lanzhou University. The measuring instrument is a Malvern laser particle size analyzer MS2000. 7. The saturated hydraulic conductivity is measured according to the enamel hair self-made instrument of Yi Yanli (2009). The Marioot bottle was used to maintain the head during the experiment; at the same time, the Ks measured at the time was converted to the Ks value at 10 °C for analysis and calculation. 8. Soil water content data is measured using ECH2O, including 5 layers of soil water content and soil temperature. 9. The water characteristic curve is measured by the centrifuge method: the undisturbed soil of the ring cutter collected in the field is placed in a centrifuge, and each of the speeds is measured at 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200, 11600. The secondary rotor weight is obtained.
HE Chansheng
This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System for soil moisture observation at the Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation area, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following variables: battery (Batt, V), temperature (T, C), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.
ZHU Zhongli, XU Ziwei, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo, ZHANG Yang
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of A’rou Superstation from January 1 to December 31, 2018. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed profile (010C; 1, 2, 5, 10, 15 and 25 m, towards north), wind direction profile (020C; 2 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 3 duplicates, -0.06 m, 2 m in the south of tower), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The average soil temperature was rejected during February 16 to March 31 and April 15 to May 20 because of broken of the sensor line; Soil heat flux were wrong occasionally during November to December. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains observation data of cosmic-ray instrument (crs) from January 1, 2017 to December 31, 2017. The site is located in the farmland of Daman Irrigation District, Zhangye, Gansu Province, and the underlying surface is cornfield. The latitude and longitude of the observation site is 100.3722E, 38.8555N, the altitude is 1556 meters. The bottom of the instrument probe is 0.5 meter from the ground, and the sampling frequency is 1 hour. The original observation items of the cosmic-ray instrument include: voltage Batt (V), temperature T (°C), relative humidity RH (%), air pressure P (hPa), fast neutron number N1C (number / hour), thermal neutron number N2C (number / hour), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s). The data was released after being processed and calculated. The data includes: Date Time, P (pressure hPa), N1C (fast neutrons one/hour), N1C_cor (pressure-corrected fast neutrons one/hour) and VWC ( soil water content %), it was processed mainly by the following steps: 1) Data Screening There are four criteria for data screening: (1) Eliminating data with a voltage less than or equal to 11.8 volts ; (2) Eliminating data with a relative humidity greater than or equal to 80%; (3) Eliminating data with a sampling time interval not within 60 ± 1 minute; (4) Eliminating data with fast neutrons that vary by more than 200 in one hour. In addition, missing data is supplemented with -6999. 2) Air Pressure Correction The original data is corrected by air pressure according to the fast neutron pressure correction formula mentioned in the instrument manual, and the corrected fast neutron number N1C_cor is obtained. 3) Instrument Calibration In the process of calculating soil moisture, it is necessary to calibrate the N0 in the calculation formula. N0 is the number of fast neutrons under the situation with low antecedent soil moisture . Usually, soil samples in the source area are used to obtain measured soil moisture (or obtained by relatively dense soil moisture wireless sensors) θm (Zreda et al. 2012) and the fast neutron correction data N in corresponding time periods, then NO can be obtained by reversing the formula. Here, the instrument is calibrated according to the Soilnet soil moisture data in the source region of the instrument, and the relationship between the soil volumetric water content θv and the fast neutron is established. The data of June 26-27, and July 16-17, respectively, which have obvious differences in dry and wet conditions, were selected. The data from June 26 to 27 showed low soil moisture content, so the average of the three values of 4 cm, 10 cm and 20 cm was used as the calibration data, and the variation range was 22% to 30%; meanwhile , the data from July 16 to 17 showed high soil moisture content, so the average of the two values of 4cm and 10 cm was used as the calibration data, and the variation range was 28% - 39%, and the final average N0 was 3597. 4) Soil Moisture Calculation According to the formula, the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, XU Ziwei, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 21-22, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 21-22, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, which can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 19 to 20, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 19-20, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 18 to 19, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 18-19, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 3.5m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
The data set contains cosmic ray instrument (CRS) observations from January 1, 2016 to December 31, 2016.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selection of dry and wet conditions are the obvious difference of June 26, 2012-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, XU Ziwei, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo
This set of data is the simulation result of the newly developed land eco-hydrological model CLM_LTF.This model is on top of the land-surface process model CLM4.5 developed by NCAR, coupling the groundwater lateral flow module and considering the role of human irrigation. The model runs from 1981 to 2013, with a spatial resolution of 30 arc seconds (0.0083 degrees), a time step of 1,800 seconds, and a simulation range of the heihe river basin.Air force in 1981-2012 is used by the Chinese academy of sciences institute of the qinghai-tibet plateau of qinghai-tibet plateau more layers of data assimilation and simulation center development areas of China high space-time resolution ground meteorological elements drive data set, air is forced to use 2013 national meteorological information center of wind pressure high resolution made by the wet precipitation temperature radiation data set.The land cover data is a 1km land cover grid data set for the MICLCover heihe river basin, and the irrigation data is shown in "monthly 30-arcsecond resolution surface water and groundwater irrigation data set for the heihe river basin 1981-2013" of the scientific data center for cold and dry regions.The mode output is the monthly average. The document is described as follows: Groundwater depth data: heihe_zwt.nc 2cm soil moisture data: heihe_h2osoi_2cm. nc 100cm soil moisture data: heihe_h2osoi_100cm.nc Evaporation data: Heihe_evaptanspiration. Nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information. The data is stored in the data variable. The underground water depth data is in m, the soil moisture data is in m^3/m^3, and the evapotranspiration data is in mm/month
XIE Zhenghui
On June 15, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5 m intervals. Each line has 23 points (north-south direction) at 5 m intervals. Four hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 500 points on the quadrat were obtained, and each point was observed twice, i.e. in each sampling point, once in the film (marked a in the data record) and once out of the film (marked b in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked b in both data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. The vegetation team completed the measurement of biomass, Lai, vegetation water content, plant height, row ridge distance, chlorophyll, etc. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
WANG Shuguo, MA Mingguo, LI Xin
The aim of the simultaneous observation of river surface temperature is obtaining the river surface temperature of different places, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the river surface temperature data will be used for validation of the retrieved river surface temperature from thermal infrared sensor and the analysis of the scale effect of the river surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation sites and other details Ten river sections were chosen to observe surface temperature simultaneously in the midstream of Heihe River Basin on 3 July and 4 July, 2012, including Sunan Bridge, Binhe new area, Heihe Bridge, Railway Bridge, Wujiang Bridge, Gaoya Hydrologic Station, Banqiao, Pingchuan Bridge, Yi’s Village, Liu’s Bridge. Self-recording point thermometers (observed once every 6 seconds) were used in Railway Bridge and Gaoya Hydrologic Station while handheld infrared thermometers (observed once of the river section temperature for every 15 minutes) were used in other eight places. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 6 July, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.
HE Xiaobo, Jia Shuzhen
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer and synchronous measurement from November 24-25, 2013 in the desert of Minle County, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 24-25, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage, 18.7ghz h polarization damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.3m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
During the period of middle stream experiment in 2012, closed chamber and gas chromatography method was used to measure soil respiration of different land surface, including farmland, orchard, wetland, sparse grassland (Huazhaizi), Gobi, desert. Instrument: Assimilation Chamber Measuring method: Assimilation chamber consists of two parts: the base and the box. Base made of PVC material, the bottom buried in the soil. The box is made of stainless steel cubes, with one open side. When measuring the box cover on the base, air in the box was sampled using injector. The extracted air was injected into the gas sampling bag, and shipped back to the laboratory analysis of the concentration of CO2 by gas chromatography in Institute of Botany, The Chinese Academy of Sciences. Using the difference of concentration of CO2 at two times to calculate soil respiration. Each measurement points are located three repeat. After five minutes sealed box cover start mining the 1st sample, and then taken once every sample interval of 10 minutes, four times in total mining. Date content: Data content includes header information and once every 10 days three times repeated observations and the average of the three times. Measuring location: Gobi (Bajitan Gobi station), Wetland (Zhangye wetland Station), Sparse grassland (Huazhaizi desert steppe Station), Desert (Shenshawo sandy desert Station), Orchard (site No.17 eddy covariance system), Maize Farmland (Daman Superstation) Measuring time: 16-6-2012, 28-6-2012, 9-7-2012, 18-7-2012, 30-7-2012, 11-8-2012, 21-8-2012, 2-9-2012, 13-9-2012, 22-9-2012 (UTC+8).
MA Mingguo, LI Xianglan
On July 7, 2012, airborne ground synchronous observation was carried out in plmr quadrats of Yingke oasis and huazhaizi desert. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern edge of Zhangye Oasis and anyangtan desert, on the west side of Zhangye Daman highway, and across the trunk canal of Longqu in the north and the south, which is divided into two parts. In the southwest, there is a 1 km × 1 km desert quadrat. Because the desert is relatively homogeneous, here 1 The soil moisture of 5 points (1 point and center point around each side, and several more points can be measured during walking along the road in the actual measurement process) is collected in KM quadrat. The four corner points are 600 m apart from each other except the diagonal direction. The southwest corner point is huazhaizi desert station, which is convenient to compare with the data of meteorological station. On the northeast side, a large sample with an area of 1.6km × 1.6km was selected to carry out synchronous observation on the underlying surface of oasis. The selection of quadrat is mainly based on the consideration of the representativeness of surface coverage, avoiding residential buildings and greenhouses as much as possible, crossing oasis farmland and some deserts in the south, accessibility, and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 11 splines (east-west distribution) were collected at the interval of 160 m in the east-west direction. Each line has 21 points (north-south direction) at the interval of 80 M. four hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 230 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
WANG Shuguo, MA Mingguo, LI Xin
This data set includes the 2013 observation data of 10 water net nodes in the 5.5km × 5.5km observation matrix (red box in the thumbnail) of Yingke / Daman irrigation area in the middle reaches of Heihe River. The 10 water net nodes contain 4cm and 10cm two-layer hydro probe II probes to observe the main variables such as soil moisture, soil temperature, conductivity and complex permittivity; the si-111 infrared temperature probe is set up at 4m height to observe the surface infrared radiation temperature of the underlying surface. The time and frequency of conventional observation is 10 minutes. In order to ensure the accurate synchronization of si-111 and remote sensing, one minute intensive observation is conducted at 00:00-04:30, 08:00-18:00 and 21:00-24:00 every day. This data set can provide spatiotemporal continuous observation data set for remote sensing estimation of key water and heat variables of heterogeneous surface, remote sensing authenticity test, ecological hydrology research, irrigation optimization management and other research. For details, please refer to "2013 middle reaches of Heihe River waternet data document 20141231. Docx"
KANG Jian, LI Xin, MA Mingguo
Soil respiration rate was measured at the super station of Daman irrigation district in Zhangye city using the open circuit soil carbon flux measurement system LI-8100 (LI-COR, Lincoln, NE, USA) 1) Objective: The aim of soil respiration rate measurement is to explore the diurnal variation characteristics of soil respiration rate and to provide a scientific basis for the assessment of farmland ecosystem carbon cycle and carbon balance. 2) Measurement instruments and ways Measurement instruments: the open type of cold dry soil carbon flux measurement system LI-8100 (LI-COR, Lincoln, NE, USA). Measurement means: soil respiration chamber was placed in PVC ring (10 cm of diameter, 5 cm of height), which was inserted into the soil about 1 to 2 cm 1 d before measurement. The observation is automatic with a power supply of solar panels. 3) Measurement time Soil respiration rate was continuously measured mainly in the corn growing season. The time used in this dataset is in UTC+8 Time. 4) Data processing The data was periodically collected from the data collection instrument and saved as *.81x file, then was converted to text format file using LI-8100 (M) PC Client v2.0.0 software.
Wang Jing, Huang Yongsheng, LI Yuan, LI Xin, MA Mingguo
This data was measured in middle stream of the Heihe River Basin in year 2012. Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter were measured for each layer of the soil profile which is very close to the AMS sites. This data can be used in land surface model and ecological model. Soil profile position: The coordinate of the profile is listed as follow. No.1 to No.17 is corresponding to the AMS number in the Matrix. No. x y 1 100.3582 38.89322 2 100.3541 38.88697 3 100.3763 38.89057 5 100.3506 38.87577 6 100.3597 38.8712 7 100.3652 38.87677 8 100.3765 38.87255 9 100.3855 38.87241 10 100.3957 38.87569 11 100.342 38.86994 12 100.3663 38.86516 13 100.3785 38.86077 14 100.3531 38.85869 16 100.3641 38.8493 17 100.3697 38.84512 15 (superstation) 100.3721 38.85547 Gebi 100.3058 38.91801 Huazhaizi 100.3189 38.7652 Shenshawo 100.4926 38.78794 Instruments: Soil texture: Microtrac laser particle analyzer Porosity: Ring sampler law Bulk density: Ring sampler law Saturated Water Conductivity: hydrostatic head method Soil organic matter: Total organic carbon analyzer (TOC-VCPH) Measuring time: 2012-5-20 to 2012-7-10 (UTC+8). Measuring content: Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter.
MA Mingguo, WANG Xufeng, WANG Haibo, YU Wenping
The first dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Yingke oasis and Huazhaizi desert steppe on 28-29 June, 7, 10, 26 July, 2 August, 2012 (UTC+8). The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Linze Inland River Basin Comprehensive Research Station on 3 July, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted in the southwest part of the Zhangye Oasis, which included two sampling plots. One was located in Gobi desert with an area of 1 km × 1 km. Due to its homogeneous landscape, around 10 points were sampled to acquire the situation of soil water content. The other sampling plot was designed in farmlands with a dominant plant type of maize. Ground measurements took place along 16 transects, which were arranged parallelly with an interval of 160 m between each other in the east-west direction. In each 2.4 km long transect, soil moisture was sampled at every 80 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. For each sampling point in farmland, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). The field campaign started from 11:00 AM, but stopped at 4:00 PM on 28 June because of rain. The rest of measurements were completed from 10:30 AM to 5:30 PM on 29 June. Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within the farmland sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.
WANG Shuguo, LI Xin
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 22 to 24, 2013 in Desert Park desert, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 22-24, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 7.4M 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
During the 2012 aerial remote sensing experiment conducted midstream, Li-Cor8100 was used to measure soil respiration every five days in the EC matrix area. Instrument: LI-Cor8100 Measuring Method: Soil respiration ring was made using PVC pipe with length of 10 cm. Before measuring soil respiration, soil respiration ring was inserted into the soil, 4 cm in soil and 6 cm above soil. Soil respiration measurement should be taken after standing for at least 24 hours science ring was inserted in soil. Sample measurement time is during 9-12 in the morning. Set of three replicates per plot. Marked according to EC site name. Data content: Data content includes header information, and once every five days repeated three times observations value and the average value. Measuring location: EC sites within the matrix core experiment area (No. EC01 to EC17), each plot set three repeat samples. For the superstation (EC15) plot set nine repeat samples. Measuring time: From 6 June to 20 August, 2012, once every five days for site EC01, EC03, EC05, EC10, EC11, EC12, EC13, EC14, and EC17; from 1 July to 20 August, 2012, once every five days for site EC02, EC04, EC06, EC07, EC08, EC09 and EC16. The time used in this dataset is in UTC+8 Time. Part of the observation points during the observation just irrigation, these times are not observable.
LI Yuan, SHI Weiyu, SONG Yi
On June 26, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5m intervals. Each line has 21 points (north-south direction) at 5m intervals. Three hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 440 points on the quadrat were obtained, and each point was observed twice, i.e. two times in each sampling point, one time inside the film (marked as a in the data record) and one time outside the film (marked as B in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked as B in the two data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: The data format of this data set is vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.
WANG Shuguo, MA Mingguo, LI Xin
On August 2, 2012, airborne ground synchronous observation was carried out in plmr quadrats of Yingke oasis and huazhaizi desert. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern edge of Zhangye Oasis and anyangtan desert, on the west side of Zhangye Daman highway, and across the trunk canal of Longqu in the north and the south, which is divided into two parts. In the southwest, there is a 1 km × 1 km desert quadrat. Because the desert is relatively homogeneous, here 1 The soil moisture of 5 points (1 point and center point around each side, and several more points can be measured during walking along the road in the actual measurement process) is collected in KM quadrat. The four corner points are 600 m apart from each other except the diagonal direction. The southwest corner point is huazhaizi desert station, which is convenient to compare with the data of meteorological station. On the northeast side, a large sample with an area of 1.6km × 1.6km was selected to carry out synchronous observation on the underlying surface of oasis. The selection of quadrat is mainly based on the consideration of the representativeness of surface coverage, avoiding residential buildings and greenhouses as much as possible, crossing oasis farmland and some deserts in the south, accessibility, and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 11 splines (east-west distribution) were collected at the interval of 160 m in the east-west direction. Each line has 21 points (north-south direction) at the interval of 80 M. four hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 230 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. No synchronous vegetation sampling was carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.
WANG Shuguo, MA Mingguo, LI Xin
On July 3, 2012, airborne ground synchronous observation was carried out in plmr sample belt near Linze station. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: According to the typical ground surface type represented by three points near Linze station and taking part of neutron tube observation into account, the three routes from northwest to southeast are designed, with an interval of 200 m, a design altitude of about 300 m and a plmr ground resolution of 100 m. According to the observation characteristics of the route and plmr, three observation transects are designed on both sides of the route, each of which is about 6 km long. From west to East are L1, L2 and L3 respectively. Among them, L1 and L2 are centered on the middle route, 80 m apart; L2 and L3 are 200 m apart. Four hydroprobe data acquisition systems (HDAS, ref. 2) were used to measure at the same time. Measurement content: About 4500 points on the sample belt were obtained, each point was observed twice, that is to say, in each sampling point, once in the film (marked as a in the data record) and once out of the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Note: the observation date coincides with the irrigation of large area of farmland in this area, which makes it difficult for the observer to move forward, the field block is difficult to enter, and the observation point position deviates from the preset point position. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
WANG Shuguo, MA Mingguo, LI Xin
The first dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 4 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The second dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 15 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The third dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 26 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The measurements were conducted at a sampling plot southeast to the Daman Superstation with an area of around 100 m × 100 m, which was dominantly planted with maize. Steven Hydro probes were used to collect soil moisture and other measurements with an interval of 5 m. For each sampling point, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within this sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, LAI, vegetation water content, canopy height, row distance and leaf chlorophyll content. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.
WANG Shuguo, LI Xin
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 17 to 18, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 17-18, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 3.6m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 15-16, 2013 in the farmland of jiushe, Kangning, Zhangye City, Gansu Province. The surface temperature includes the soil temperature data observed by the temperature sensor at the soil depth of 0 cm, 1 cm, 3 cm, 5 cm and 10 cm. The time frequency of conventional observation of soil temperature is 5 minutes. Data details: 1. Time: November 15-16, 2013 2. data: Bright temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz v-polarization and H-polarization data (10.65ghz band instrument damaged) Soil temperature: use the sensor installed on dt85 to measure the soil temperature of 0cm, 1cm, 3cm, 5cm and 10cm Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 4.8m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
On July 26, 2012, the airborne ground synchronous observation was carried out in the plmr quadrat in the dense observation area of Daman. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the matrix of the dense observation area of Daman, and the detailed plan with an area of 3.0KM × 2.4km is selected to carry out synchronous observation on the underlying surface of oasis. The selection of the sample is mainly based on the representativeness of the surface coverage, accessibility and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 5 splines (east-west distribution) were collected at an interval of 450 m in the east-west direction. Each line has 31 points (north-south direction) at an interval of 100 m, and 5 hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 150 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.
WANG Shuguo, MA Mingguo, LI Xin
On July 10, 2012, the airborne flight and ground observation was synchronously carried out in the PLMR quadrat of Yingke Oasis and the Huazhaizi Desert. PLMR (Polarimetric L-band Multibeam Radiometer) is a dual-polarized (H/V) L-band microwave radiometer with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, and a resolution of 1 km (relative flight height of 3 km).The radiometer has 6 beams to observe synchronously, and the incident angles are ±7º,±21.5º,±38.5º, and the sensitivity is less than 1K. The flight observation mainly covers the artificial oasis eco-hydrological test area in the middle reaches. This ground-synchronized data set provides a basic ground dataset for developing and validating passive microwave remote sensing inversion soil moisture algorithms. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern margin of Zhangye Oasis and Anyang beach desert, the west side of Zhang (Zhangye)-Da (Daman) highway. It is divided into two parts by the main canal of the Dragon Canal from North to South. The Southwest area is a desert quadrat with the size of 1 km×1 km. The desert is relatively homogeneous, so soil moisture of 5 points in the 1 km quadrat are collected (1 point of each corner and the center point, in the actual measurement process, several extra points can be measured along the road). The four corner points are 600 meters away from each other,except the diagonal direction. And the southwest corner point is Huazhaizi Desert Station, for the convenience of comparison with weather station data. On the northeast side, a large size quadrat of 6 km×1.6 km is selected for simultaneous observation of the oasis underlying surface.In order to obtain the brightness temperature comparison with the PLMR observation, the quadrat was chose based on the following factors :surface coverage representative, avoiding the residential and greenhouses, crossing the oasis farmland and part of the Southern desert, accessibility, and observation time(road consumption). Taking the resolution of PLMR observations into consideration, in the synchronous observation, 11 sampling lines (East-West distribution) were collected with an interval of 160 meters from the East to the West. Each line from the North to the South was separated by 21 points with an interval of 80 meters. And 4 Hydraprobe Data Acquisition System (HDAS, Reference 2) were used to measure simultaneously. Measurement contents: About 230 points of the quadrat were collected, 2 observations were performed on each point, that is, 2 observations were performed on each sampling point of the film mulched corn field, 1 inside the film (marked as a in the data record), 1 outside the film (marked as b in the data record). Since the HDAS system useed the POGO portable soil sensor, the soil temperature, soil moisture (volumetric water content), loss tangent, soil electrical conductivity, soil complex dielectric real part and imaginary part were obtained by observation. No special simultaneous sampling of vegetation was carried out on the same day. Data: The data set includes two parts: soil moisture observation and vegetation observation. The former saves the data as a vector file, the spatial position is the position of each sampling point (WGS84+UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.
WANG Shuguo, LI Xin
According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil organic carbon content in different layers are produced by using the digital soil mapping method. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_soc_layer1.tif: 0-5cm soil organic carbon content; hh_soc_layer2.tif: 5-15cm soil organic carbon content; hh_soc_layer3.tif: 15-30cm soil organic carbon content; hh_soc_layer4.tif: 30-60cm soil organic carbon content; hh_soc_layer5.tif: 60-100cm soil organic carbon content;
ZHANG Ganlin
The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau.
MA Rui , HU Yalu
This data set includes the observation data of 25 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River from January 2015 to December 2015. 4cm and 20cm soil moisture / temperature is the basic observation of each node; some nodes also include 10cm soil moisture / temperature, surface infrared radiation temperature, snow depth and precipitation observation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. For details, please refer to "2015 data document 20160501. Docx of water net of Babao River in the upper reaches of Heihe River"
KANG Jian, LI Xin, MA Mingguo
The data set contains cosmic ray instrument (CRS) observations from January 1, 2015 to December 31, 2015.The station is located in dachman super station, dachman irrigation district, zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and SW (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selected dry wet condition are the obvious difference of June 26-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm the three values of average as calibration data, the change range of 22% to 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, LI Xin, XU Ziwei
This dataset includes the observational data from 20 September, 2012, through 31 December, 2013, collected by the Cosmic-ray Soil Moisture Observation System (COSMOS), called crs, which waslocated at 100.372° E, 38.856° N and 1557 m above sea level,near the Daman Superstation in the Daman Irrigation District, Zhangye City, Gansu Province. The land cover in the footprint was a maize crop. The bottom of the probe was 0.5 m above the ground, and the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), the sample time of fast neutrons (N1ET, s), and the sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were deleted and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity exceeded 80% inside the probe box, (c) the samping durationwere less than 59 minutes or greater than 61 minutes and (d) the neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation containedin the equipment manual. 3) Calibration After the quality control and corrections were applied, the soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture recordedby SoilNET within the footprint. 4) Soil moisture computation Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation specified in the equipment manual. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Zhu et al. (2015) (for data processing) in the Citation section.
LIU Shaomin, ZHU Zhongli, LI Xin, XU Ziwei
This data set contains cosmic ray instrument (CRS) observations from January 1, 2014 to December 31, 2014.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. The original observations of the cosmic ray instrument (CRS1000B) included: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. (1) Where m is mass water content, N is the number of fast neutrons after revision, N0 is the number of fast neutrons under dry conditions, a1=0.079, a2=0.64, a3=0.37 and a4=0.91 are constant terms. Here, the instrument was calibrated according to Soilnet soil water data in the source area of the instrument, and the relationship between soil volumetric water content (v) and fast neutrons was established according to the actual situation. In formula (1), m was replaced by v.Selected dry wet condition are the obvious difference of June 26-27 June and July 16 - July 17 four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16 - July 17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%,Finally, the average values of crs_a and crs_b, N0, were 3252 and 3597, respectively. 4) soil moisture calculation According to formula (1), the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, LI Xin, XU Ziwei
This dataset includes the observational data that were collected by two sets of Cosmic-ray Soil Moisture Observation System (COSMOS), named crs_a and crs_b, which were installed near the Daman Superstation in the flux observation matrix from 1 June through 20 September 2012. The land cover in the footprint was maize crop, and the site was located with the cropland of the Daman Irrigation District, Zhangye, Gansu Province. Crs_a was located at 100.36975° E, 38.85385° N and 1557.16 m above sea level; Crs_b was located at 100.37225° E, 38.85557° N and 1557.16 m above sea level. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) then neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual. The procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012). 3) Calibration After the quality control and corrections were applied, soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 must be calibrated using the in situ observed soil moisture within the footprint. This procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012) 4) Computing the soil moisture Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. This procedure was previously described by Jiao et al, (2013) and Zreda et al. (2012) For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Zhu et al. (2015) (for data processing) in the Citation section.
LIU Shaomin, ZHU Zhongli, XU Ziwei, LI Xin
This data set includes the 2015 observation data of 9 water net nodes in the 5.5km × 5.5km observation matrix (red box in the thumbnail) of Yingke / Daman irrigation area in the middle reaches of Heihe River. The nine nodes contain 4cm and 10cm two-layer hydro probe II probes to observe the main variables such as soil moisture, soil temperature, conductivity and complex permittivity; the si-111 infrared temperature probe is set up at 4m height to observe the surface radiation infrared temperature of the underlying surface. The observation time frequency is 5 minutes. This data set can provide spatiotemporal continuous observation data set for remote sensing estimation of key water and heat variables of heterogeneous surface, remote sensing authenticity test, ecological hydrology research, irrigation optimization management and other research.
KANG Jian, LI Xin, MA Mingguo
1. The data set is the soil water content data set of the upper reaches of Heihe River Basin, and the data is the measured data of location points from 2013 to 2014. 2. The infiltration data is measured with ech2o. Including 5 layers of soil moisture content and soil temperature 3. Some instruments lack of data due to insufficient battery life, broken roads, stolen instruments and other reasons
HE Chansheng
The dataset is the field soil measurement and analysis data of the upstream of Heihe River Basin from 2013 to 2014, including soil particle analysis, water characteristic curve, saturated water conductivity, soil porosity, infiltration analysis, and soil bulk density I. Soil particle analysis 1. The soil particle size data were measured in the particle size laboratory of the Key Laboratory of the Ministry of Education, West Ministry of Lanzhou University.The measuring instrument is Marvin laser particle size meter MS2000. 2. Particle size data were measured by laser particle size analyzer.As a result, sample points with large particles cannot be measured, such as D23 and D25 cannot be measured without data.Plus partial sample missing. Ii. Soil moisture characteristic curve 1. Centrifuge method: The unaltered soil of the ring-cutter collected in the field was put into the centrifuge, and the rotor weight of each time was measured with the rotation speed of 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200 and 11600 respectively. 2. The ring cutter is numbered from 1 to the back according to the number. Since three groups are sampled at different places at the same time, in order to avoid repeated numbering, the first group is numbered from 1, the second group is numbered from 500, and the third group is numbered from 1000.It's consistent with the number of the sampling point.You can find the corresponding number in the two Excel. 3. The soil bulk density data in 2013 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 4. Weight after drying: The drying weight of some samples was not measured due to problems with the oven during the experiment. 3. Saturated water conductivity of soil 1. Description of measurement method: The measurement method is based on the self-made instrument of Yiyanli (2009) for fixing water hair.The mariot bottle was used to keep the constant water head during the experiment.At the same time, the measured Ks was finally converted to the Ks value at 10℃ for analysis and calculation.Detailed measurement record table refer to saturation conductivity measurement description.K10℃ is the data of saturated water conductivity after conversion to 10℃.Unit: cm/min. 2. Data loss explanation: The data of saturated water conductivity is partly due to the lack of soil samples and the insufficient depth of the soil layer to obtain the data of the 4th or 5th layer 3. Sampling time: July 2014 4. Soil porosity 1. Use bulk density method to deduce: according to the relationship between soil bulk density and soil porosity. 2. The data in 2014 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 5. Soil infiltration analysis 1. The infiltration data were measured by the "MINI DISK PORTABLE specific vector INFILTROMETER".The approximate saturation water conductivity under a certain negative pressure is obtained.The instrument is detailed in website: http://www.decagon.com/products/hydrology/hydraulic-conductivity/mini-disk-portable-tension-infiltrometer/ 2.D7 infiltration tests were not measured at that time because of rain. Vi. Soil bulk density 1. The bulk density of soil in 2014 refers to the undisturbed soil taken by ring cutter based on the basis of 2012. 2. The soil bulk density is dry soil bulk density, which is measured by drying method.The undisturbed ring-knife soil samples collected in the field were kept in an oven at 105℃ for 24 hours, and the dry weight of the soil was divided by the soil volume (100 cubic centimeters). 3. Unit: G /cm3
HE Chansheng
This data is the longitude and latitude information of soil water sampling points in the "observation experiment of Soil Hydrological heterogeneity in the upper reaches of Heihe River and its impact on the hydrological process in mountainous areas" (91125010) of Heihe project, which is mainly used to express the spatial distribution of soil water sampling points in this project.
HE Chansheng
The dataset includes the saturated hydraulic conductivity data of typical soil samples in Heihe River Basin from July 2012 to August 2013. The collection method of typical soil sample points in Heihe River Basin is representative sampling, which means that the typical soil types in the landscape area can be collected, and the sample points with higher representativeness can be collected as much as possible, and the saturated hydraulic conductivity of each type of soil can be measured three times for the average value.
ZHANG Ganlin,
This dataset includes soil moisture and soil temperature observations of 75 BNUNET nodes during the period from May to September 2012 (UTC+8), which is one type of WSN nodes in the Heihe eco-hydrological wireless sensor network (WSN). The BNUNET located in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area. Each BNUNET node observes the soil temperature at 4 cm, 10 cm and 20 cm depth, and soil moisture at 4 cm depth with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "Data introduction.docx".
Liu Jun, KOU Xiaokang, MA Mingguo
This data set includes 26 bnunet nodes in the 0.5 °× 0.5 ° observation matrix around Zhangye City in the middle reaches of Heihe River from September 2013 to March 2014. The configuration of 26 nodes is the same, including 3 layers of soil temperature probe with depth of 1cm, 5cm and 10cm and 1 layer of soil moisture probe with depth of 5cm. The observation frequency is 2 hours. This data set can provide spatiotemporal continuous observation data set for remote sensing authenticity test of surface heterogeneity and ecological hydrology research. The time is UTC + 8. Please refer to "bnunet data document. Docx" for details
ZHAO Shaojie, WANG Qi, LU Zheng, MA Mingguo, CHAI Linna
The data set contains soil observation data of typical sample points in Heihe River Basin: pH value and soil texture 1. Soil pH value: longitude, latitude and pH value of typical soil sample points. 2. Soil texture: including soil texture data of typical soil samples in Heihe River Basin from July 2012 to August 2013. The typical soil sampling method in Heihe River Basin is representative sampling, which means that the typical soil types in the landscape area can be collected, and the representative sample points should be collected as far as possible. According to the Chinese soil taxonomy, soil samples from each profile were taken based on the diagnostic layers and diagnostic characteristics.
ZHANG Ganlin,
The data set contains the location information and soil systematic type data of typical soil samples from the Heihe River Basin from July 2012 to August 2014. The typical soil sample collection method in the Heihe River Basin is representative sampling, which refers to the typical soil types that can be collected in the landscape area, and collects highly representative samples as much as possible. According to the Chinese soil systematic classification, the soil type of each section is divided based on the diagnostic layer and diagnostic characteristics. The sample points are divided into 8 soil orders: organic soil, anthropogenic soil, Aridisol, halomorphic soil, Gleysol, isohumicsoill , Cambisol, Entisol, and 39 sub-categories.
ZHANG Ganlin,
The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 2000-2012. The data include evapotranspiration, runoff depth and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.
YANG Dawen
The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 1980-2010. The data included precipitation, evapotranspiration, runoff depth, and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.
YANG Dawen
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn