"Coupling and Evolution of Hydrological-Ecological-Economic Processes in Heihe River Basin Governance under the Framework of Water Rights" (91125018) Project Data Convergence-MODIS Products-Land Use Data in Northwest China (2000-2010) 1. Data summary: Land Use Data in Northwest China (2000-2010) 2. Data content: Land use data of Shiyanghe River Basin, Heihe River Basin and Shulehe River Basin in Northwest China from 2000 to 2010 obtained by MODIS
WANG Zhongjing
1. Overview of data Based on the Google earth image data in 2012, the land use types of wetland parks were vectorized by visual interpretation method, which provided the data basis for wetland ecosystem service assessment. 2. Data content Land use types include wetland, farmland (corn, vegetables, wheat), water area, forest land, construction land, bare land, etc. Scale: 1: 50,000; Coordinate system: WGS84; Data type: vector polygon; Storage format: Dbf/Shp/Jpeg 3. Space-time range Coverage: Zhangye National Wetland Park; Total area: 46.02 square kilometers.
XU Zhongmin
1. Overview of data This data is based on the latest googleearth remote sensing image data to establish the spatial distribution database of crops in Ganzhou District of Zhangye City. 2. Data content Based on the spatial distribution of maize seed production focused by the project, the land use types in the study area are divided into 14 types (maize seed production land, spring wheat land, vegetable land, greenhouse land, intercropping land, rice land, water area, wetland, forest land, urban and rural industrial and mining residential land, roads, railways and unused land). 3. Space-time range The data range includes 19 villages and towns including Pingshanhu, Shajing, Wujiang River, Jingan, Mingyong, Sanzha, Ganjun, Xindun, Shangqin, Jiantan, Chengguan Town, Liangjiadun, Chang 'an, Dangzhai, Xiaoman, Longqu, Daman, Huazhai and Anyang. The data type is vector polygon and stored in Shape format. The data range covers Ganzhou District.
XU Zhongmin
The distribution map of irrigation area and main and branch canals in Heihe River basin includes the main irrigation area and the distribution of all main and branch canals in Heihe River Basin. The irrigation area mainly includes Luocheng irrigation area, Youlian irrigation area, Liuba irrigation area, Pingchuan irrigation area, liaoquan irrigation area, Liyuan River irrigation area, yannuan irrigation area, Banqiao irrigation area, Shahe irrigation area, Xijun irrigation area, Yingke irrigation area, Daman irrigation area, Maying River irrigation area, shangsan irrigation area, Xinba irrigation area and Hongyazi irrigation area. The distribution map of main and branch canals includes all the main canals and branch canals of these 16 irrigation areas.
XU Maosen, XU Zongxue, HU Litang
China's administrative regions are basically divided into three levels: provinces (autonomous regions, municipalities directly under the central government), counties (autonomous counties, cities), townships (nationality townships, towns). In order to meet the needs of user statistics and cartography, we have published 1:1 million national administrative division data sets according to the national basic geographic information center. The administrative division data of Heihe River Basin were prepared. This data reflects the current situation of administrative divisions in Heihe River basin around 2008, including the information of provincial, regional and county-level administrative divisions. Its main attributes (such as area, code of administrative divisions, province (autonomous region), city (region, autonomous prefecture)) come from China's administrative divisions published in 2008.
WU Lizong
This data includes the basic terrain data, soil data, meteorological data, land use / land cover data, etc. needed for SWAT model operation. All maps and relevant point coordinates (meteorological station, hydrological station) adopt the coordinate system of Gauss Kruger projection which is consistent with the basic topographic map of our country. Data content includes: a) The basic topographic data include DEM and river network. The size of DEM grid is 50 * 50m, and the drainage network is manually digitized from 1:100000 topographic map. b) Soil data: including soil physics, soil chemistry and spatial distribution of soil types. The scale of digital soil map is 1:1 million, which is converted into grid format of ESRI, with grid size of 50 * 50m. Each soil profile can be divided into up to 10 layers. The sampling index of soil texture required by the model adopts the American Standard. The parameters are from the second National Soil Census data and related literature. c) Meteorological data: (1) Temperature: the data of daily maximum temperature, daily minimum temperature, wind speed and relative humidity are from the daily observation data of Qilian, Shandan, tole, yeniugou and Zhangye meteorological stations in and around the basin, with the period from 1999 to 2001. (2) Precipitation: the rainfall data comes from five hydrological stations in and around the basin, i.e. OBO (1990-1996), Sunan (1990-2000), Qilian (1990-2000), Yingluoxia (1990-2000), zamashk (1990-2000), Shandan (1999-2001), tole (1999-2001), yeniugou (1999-2001), Zhangye (1999-2001) and Qilian County (1999-2001) Observation data. (3) Wind speed and relative humidity: wind speed and relative humidity come from the daily observation data of 5 meteorological stations in Shandan, tole, yeniugou, Zhangye and Qilian county. The period is from 1999 to 2001. (4) Solar radiation: solar radiation has no corresponding observation data and is generated by model simulation. d) Land use / land cover: 1995 land use data, scale 1:100000. Convert it to grid format of ESRI, with grid size of 50 * 50m. e) Meteorological data simulation tool (weather generator) database: the weather data simulation tool of SWAT model can simulate and calculate the daily meteorological input data required by the model operation according to the monthly statistical data for many years without the actual daily observation data, and can also carry out the interpolation of incomplete observation data. The meteorological data are from the surrounding meteorological stations.
NAN Zhuotong
1. Data overview: this data is the blue and green water data of Heihe River Basin simulated by SWAT model; 2. Data content: data mainly includes blue-green water and green water coefficient of the whole basin and each sub Basin; 3. Spatial and temporal scope: the data time is from 1975 to 2004, and the spatial scope includes 34 sub basins and the whole Heihe River Basin; 4. Data file: the relevant data is placed in the Swat folder, including the sub_basin folder (sub basin distribution map), "blue and green water of the whole Heihe River Basin" folder and "blue and green water of each hydrological response unit of the Heihe River Basin" folder.
LIU Junguo
Data Overview: Zhangye's channels are divided into five levels: dry, branch, bucket, agricultural and Mao channels, of which the agricultural channels are generally unlined. Mao channels are field projects, so the three levels of dry, branch and bucket channels and a small part of agricultural channels are mainly collected. The irrigation canal system data includes 2 main canals (involving multiple irrigation districts), 157 main canals (within a single irrigation district), 782 branch canals and 5315 dou canals, with a total length of 8, 745.0km. Data acquisition process: remote sensing interpretation and GPS field measurement are adopted for data acquisition of irrigation canal system. Direct GPS acquisition channel is the most effective method, but the workload of GPS acquisition channel is too large, and we only verify the measurement in some irrigation areas. The main method is to first collect the manual maps of irrigation districts drawn by each water pipe. Most of these maps have no location, only some irrigation districts such as Daman and Shangsan have been located based on topographic maps, and some irrigation districts in Gaotai County have used GPS to locate some channels. Referring to the schematic diagram of the irrigation district, channel spatial positioning is carried out based on Quikbird, ASTER, TM remote sensing images and 1: 50000 topographic maps. For the main canal and branch canal, due to the obvious linear features on remote sensing images and the general signs on topographic maps, it can be located more accurately. For Douqu, areas with high-resolution images can be located more accurately, while other areas can only be roughly located according to fuzzy linear features of images and prompt information of irrigation district staff, with low positioning accuracy. Each water management office simultaneously provides channel attribute data, which is one-to-one corresponding to spatial data. After the first draft of the channel distribution map is completed, it is submitted twice to the personnel familiar with the channel distribution of each water pipe for correction. The first time is mainly to eliminate duplication and leak, and the second time is mainly to correct the position and perfect the attribute data. Description of data content: The fields in the attribute table include code, district and county name, irrigation area name, channel whole process, channel name, channel type, location, total length, lined, design flow, design farmland, design forest and grass, real irrigation farmland, real irrigation forest and grass, water right area, and remarks. Code example: G06G02Z15D01, where the first letter represents the county name, the 2nd and 3rd numbers represent the county (district) number, the 4th to 6th characters represent the trunk canal code, the 7th to 9th characters represent the branch canal code, and the 10th to 12th characters represent the dou canal code.
MA Mingguo
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn