The 2008 national remote sensing annual average surface temperature and freezing index is a 5 km instantaneous surface temperature data product based on MODIS Aqua/Terra four times a day by Ran Youhua et al. (2015). A new method for estimating the annual average surface temperature and freezing index has been developed. The method uses the average daily mean surface temperature observed by LST in morning and afternoon to obtain the daily mean surface temperature. The core of the method is how to recover the missing data of LST products. The method has two characteristics: (1) Spatial interpolation is carried out on the daily surface temperature variation observed by remote sensing, and the spatial continuous daily surface temperature variation obtained by interpolation is utilized, so that satellite observation data which is only once a day is applied; (2) A new time series filtering method for missing data is used, that is, the penalty least squares regression method based on discrete cosine transform. Verification shows that the accuracy of annual mean surface temperature and freezing index is only related to the accuracy of original MODIS LST, i.e. the accuracy of MODIS LST products is maintained. It can be used for frozen soil mapping and related resources and environment applications.
RAN Youhua, LI Xin
As an important parameter of permafrost research, the freezing-thawing index is of great significance to the research of permafrost, and it is also an important index for the research of climate change.The cumulative value of daily air temperature or surface soil temperature at a given time. This data is based on the daily surface temperature observation data of 15 regular meteorological stations in the heihe valley of China meteorological administration, and the annual surface freezing-thawing index of each meteorological station from 1960 to 2006 is calculated.
ZHANG Tingjun
1. Data overview: this data set is the data set of artificial observation of frozen soil depth at Qilian station from January 1, 2011 to December 31, 2011, at 08:00 every day. 2. Data content: data content is frozen depth data set of permafrost. Frozen soil observation uses the frozen depth (length) of water poured into the rubber inner tube as a record. According to the position and length of water frozen in the permafrost buried in the soil, the frozen layer and its upper and lower limit depths are measured. In centimeters (CM), rounded to the nearest whole number. Observe once every day at 0.8 o'clock. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2981.0m
HAN Chuntan, SONG Yaoxuan, LIU Junfeng, YANG Yong, QING Wenwu, LIU Zhangwen
1. Data overview: This data set is the data set of frozen depth of permafrost observed artificially in qilian station from January 1, 2013 to December 31, 2013, and observed at 08 o 'clock every day. 2. Data content: The data content is the frozen depth data set of the tundra.The frozen depth (length) of the water in the inner rubber tube is used as a record to determine the freezing level and the upper and lower depth of the frozen layer according to the freezing position and length of the water in the frozen pot.In centimeters (cm), round off the whole number and round off the decimal.Observe once a day at 0:8. 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m
CHEN Rensheng, HAN Chuntan, SONG Yaoxuan, LIU Junfeng, YANG Yong, LIU Zhangwen
1. Data overview: This data set is the data set of frozen depth of permafrost observed artificially in qilian station from January 1, 2012 to December 31, 2012, and observed at 08 o 'clock every day. 2. Data content: The data content is the frozen depth data set of the tundra.The frozen depth (length) of the water in the inner rubber tube is used as a record to determine the freezing level and the upper and lower depth of the frozen layer according to the freezing position and length of the water in the frozen pot.In centimeters (cm), round off the whole number and round off the decimal.Observe once a day at 0:8. 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m
CHEN Rensheng, SONG Yaoxuan, HAN Chuntan, LIU Junfeng, YANG Yong
This data is obtained by spatial interpolation and permafrost simulation through the surface temperature at 0 cm of nine stations in and outside the source area of the upper reaches of Heihe River. In the figure, 1 represents seasonal frozen soil and 2 represents permafrost. The data is in TIFF format, WGS-84 is used for projection, and the spatial range is 37.7263n-39.0976n, 98.5769e-101.1608e.
GE Shemin
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No.2 quadrate of the A'rou foci experimental area on Oct. 17, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. The quadrate was divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture by ML2X; soil volumetric moisture, soil conductivity, soil temperature, and the real part of soil complex permittivity by WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the A'rou foci experimental area on Oct. 18, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by the WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
The data is the monthly average spatial distribution of frozen soil in Heihe River Basin from 2000 to 2009. Based on the grid temperature data of Heihe River Basin from 2000 to 2009, the freezing and thawing state of surface soil is divided into three kinds: unfreezing state, incomplete freezing state and complete freezing state. Complete freezing means that the soil is completely frozen in the whole month. Incomplete freezing refers to soil freezing days ≤ 30 days but ≥ 1 day in a month, and the soil has freeze-thaw cycle. Non freezing means that the soil will not freeze this month. The data is in the form of grid, which can be opened in ArcGIS. 1 represents unfrozen state, 2 represents unfrozen state, 3 represents fully frozen state
PENG Xiaoqing, ZHANG Tingjun
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn