The data set includes soil pH data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil bulk density data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil organic carbon concentrations data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
This data set contains the element content data of a deep drilled formation near the open sea in the middle reaches of Heihe River. The borehole is located at 99.432 E and 39.463 n with a depth of 550m. The element scanning analysis was carried out at 1-3cm intervals for the drilled strata. The scanning was completed in the Key Laboratory of Western Ministry of environmental education, Lanzhou University, and 38705 effective element data were obtained.
HU Xiaofei, PAN Baotian
This data set contains a deep drilling paleomagnetic age data near the open sea in the middle reaches of Heihe River. The borehole is located at 99.432 E and 39.463 n with a depth of 550m. The samples of paleomagnetic age were taken at the interval of 10-50 cm. The paleomagnetic test was carried out in the Key Laboratory of Western Ministry of environmental education of Lanzhou University. The primary remanence of the samples was obtained by alternating demagnetization and thermal demagnetization, and the whole formation magnetic formation was obtained by using the primary remanence direction of each sample, and then the sedimentary age of the strata was obtained by comparing with the standard polarity column. The results show that the bottom boundary of the borehole is about 7 Ma and the top boundary is 0 ma.
HU Xiaofei, PAN Baotian
Seven boreholes were drilled in the middle reaches of Heihe River. According to the sedimentary characteristics, the lithology of different layers of each borehole was described.
HU Xiaofei, PAN Baotian
This data set contains two shallow drilling data near Heiquan in the middle reaches of Heihe River: 140 meters and 68.2 meters deep respectively. Paleomagnetic age samples were taken at 10-50 cm intervals from the two boreholes, and the magnetostratigraphic sequences of the two boreholes were obtained by testing these samples.
HU Xiaofei, PAN Baotian
Two shallow drills near Heiquan in the middle reaches of Heihe River are 140 meters and 68.2 meters deep respectively. The physical and chemical indexes of the two boreholes are analyzed, including grain size and heavy mineral analysis.
PAN Baotian, HU Xiaofei
Sketch map of 1:50000 geological map of hulugou small watershed in 2012, hulugou watershed is composed of Quaternary loose stratum and pre Cenozoic bedrock stratum. The pores of the bedrock stratum are mainly fissures and covered with thin residual slope deposits. The Pleistocene alluvial proluvial sand gravel layer (q3al + PL) above the piedmont plain is dominant. The loose formation in the front of the glacier is Holocene moraine gravel layer (q4gl), which is distributed under the modern cirque and forms lateral moraine and final moraine dike (ridge).
SUN Ziyong, CHANG Qixin
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area on May 25, 2008. Observation items included: (1) the soil temperature in L1, L2, L3, L4, L5, L6 and L7; (2) roughness measured by the roughness grid board and collected by the digital camera. Files with "result" field were processed data, in which the first row was RMS height (cm; one value), the second row was distance (cm), and the third row was correlation function (cm; changed into correlation length when it is 1/e). (3) GPR and TDR data. Five files were included, roughness photos and preprocessed data, the soil temperature, coordinates of quadrates and sampling lines, GPR and microwave radiometer data. All were archived as Excel and .txt files. Those provide reliable ground data for development and validation of soil moisture and freeze/thaw algorithms from active remote sensing approaches.
BAI Yunjie, CAO Yongpan, CHE Tao, DU Ziqiang, HAO Xiaohua, WANG Zhixia, WU Yueru, CHAI Yuan, CHANG Sheng, QIAN Yonggang, SUN Xiaoqing, WANG Jindi, YAO Dongping, ZHAO Shaojie, ZHENG Yue, ZHAO Yingshi, LI Xiaoyu, PATRICK Klenk, HUANG Bo, LI Shihua, LUO Zhen
The dataset of surface roughness measurements was obtained in A1, A2, A3, L1, L2, L3, L4, L5 and L6 of the A'rou foci experimental area. The quadrates were changed into 3×3 subsites during the foci experimental period, with each one spanning a 30×30 m2 plot. With the roughness plate 110cm long and the measuring points distance 1cm, the samples were collected along the strip from south to north and from east to west, respectively. As for the sampling lines, the samples were collected every 100 m along them from south to north. Photos were named in the form of A3-1EW, indicating No. 1 point in A3 measured from east to west. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 radius is also included for further checking. Those provide reliable ground data for improving and verifying the remote sensing algorithms. Nine files were included, ARou_SampleArea1, ARou_SampleArea2, ARou_SampleArea3, ARou_SampleLine1, ARou_SampleLine2, ARou_SampleLine3, ARou_SampleLine4, ARou_SampleLine5 and ARou_SampleLine6.
CAO Yongpan, CHE Tao, HAN Xujun, LI Xin, LI Zhe, WANG Shuguo
The dataset of airborne L-band microwave radiometer and thermal imager mission was obtained in the Binggou-A'rou flight zone in the afternoon of Apr. 1, 2008. The frequency of L bands was 1.4 GHz with back sight of 35 degree and dual polarization (H&V) was acquired. The plane took off at Zhangye airport at 12:48 (BJT) and landed at 16:35 along the scheduled lines at the altitude about 5000m and speed about 260km/hr.. The raw data include microwave radiometer (L) data, thermal imager data (7.5-13 um; FOV: 24×18º) and GPS data; the first were instantaneous non-imaging observation recorded in text, which could be converted into brightness temperatures according to the caliberation coefficients (filed with raw data together), and the third are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. L band resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height). The thermal imager was 320*240 pixels and with FOV of 24×18º. The thermal imager data were stored in binary format with a text header file. The recorded value was brightness temperature at sensor with scale and gain parameter recorded in the header file. And the thermal images were not geometrically corrected because there were gaps between sequential images.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, XIAO Qing, Liu Qiang
The dataset of surface roughness measurements was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area during the pre-observation period. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. The original photos of each sampling point, surface height standard deviation (cm) and correlation length (cm) were included. With the roughness grid board 110cm long and the measuring intervals of 1cm, the samples were collected along the soil surface from south to north and from east to west, respectively. The coordinates of sample points would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The roughness data files were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 needles is also included for further checking. Those provide reliable ground data for improving and verifying the microwave remote sensing algorithms.
CAO Yongpan, CHAO Zhenhua, CHE Tao, QIN Chun, WU Yueru
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in No. 2 and 3 quadrates of the A'rou foci experimental area on Jun. 23, 2008. Observation items included: (1) quadrates investigation including GPS by GARMIN GPS 76, plant species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, phenology by manual work, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the chlorophyll content by SPAD 502. Data were archived in Excel format. (2) roughness by the self-made roughness board and the camera. The processed data were archived as .txt files. (3) BRDF by ASD FieldSpec (350~2 500 nm), with 20% reference board and the observation platform made by Beijing Normal University. The processed reflectance and transmittivity were archived as .txt files. (4) LAI of stellera and pasture by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in Excel). For more details, see Readme file. Five files were included, spectrum in No.2 quadrate, multiangle observations in No.2 and 3 quadrates, roughness photos in No.2 and 3 quadrates, the fisheye camera observations, and the No.2 and 3 quadrates investigation.
CAO Yongpan, DING Songchuang, HAO Xiaohua, DONG Jian, Qu Yonghua, YU Yingjie
The dateset of the ground-based RPG-8CH-DP microwave radiometer observations was obtained in the Biandukou foci experimental area from Mar. 14 to 17, 2008. Observation items included the brightness temperature by the ground-based microwave radiometer (18.7GHz and 36.5GHz), the soil temperature by the thermal resistor, the gravimetric soil moisture by the microwave drying method, and the surface roughness by the grid board. The wheat stubble land (38°15'44.13"N, 100°55'35.34"E) was chosen for continuous observations from 11:00 to 24:00 on Mar. 14, with the incidence 20°-70° and the step length 5°. The rape stubble land (38°15'23.17"N, 100°58'37.84"E) was chosen for continuous observations from 10:00 to 21:30 on Mar. 16, with the incidence 20°-70° and the step length 5°. The deep plowed land (38°18'8.28"N, 101° 3'27.22"E) was chosen for short time observations from 17:26 to 19:20 on Mar. 17, with the azimuth angle 240°-300° and the step length 10°, the incidence 40°-70° and the step length 5°. The brightness temperature was archived as .BRT and .txt files (the ASCII format). Each row in .txt was listed by year, month, date, hour, minute, second, 6.925GHz (h), 6.925GHz (v), 10.65GHz (h), 10.65GHz (v) , 18.7GHz (h), 18.7GHz (v), 36.5GHz (h), 36.5GHz (v), the elevation angle, and the azimuth angle. Values for 6.925GHz and 10.65GHz were zero due to malfunction. The roughness data were obtained by the grid board and the camera and the RMS height (cm) and correlation length (cm) were also calculated and archived, which could be opened by Notepad or Microsoft Office Word. Those provide reliable reference for the roughness of the same land cover type. The gravimetric soil moisture (soil samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The file can be opened by Microsoft Office Word. The shallow layer soil moisture was measured by hydra prob from 12:00 to 17:00 on 14 and by the Hydra probe (straight downward for 0-5cm) and HH2 (level into the soil surface) on 16. The surface temperature was measured by the thermal resistor. The file can be opened by Microsoft Office Word. Four data files were included, the brightness temperature, the surface temperature, the soil moisture and the surface roughness.
CHANG Sheng, LIANG Xingtao, PAN Jinmei, PENG Danqing, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, YIN Xiaojun, ZHANG Zhiyu
The dataset of surface roughness measurements by phototaking was obtained in the Huazhaizi desert steppe foci experimental area. Observation items included: (1) Surface roughness synchronizing with ASAR and MODIS in Huazhaizi desert No. 2 plot on May 24, 2008. (2) Surface roughness synchronizing with WiDAS in Huazhaizi desert No. 1 plot on May 30, 2008. The self-made roughness reference board (Cold and Arid Regions Environmental and Engineering Research Institute, CAS), the digital camera and the compass were used. Sample points were selected at equal intervals along the diagonals and marked in the photos.
XU Zhen, SHU Lele, WANG Jianhua
The dataset of surface roughness measurements was obtained in No. 1 and 2 quadrates of the E’bao foci experimental area during the pre-observation period. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. With the roughness board 110cm long and the measuring points distance 1cm, the samples were collected along the strip from south to north and from east to west, respectively. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be calculated based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The original photos of each sampling point, surface height standard deviation (cm) and correlation length (cm) were archived. The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 needles is also included for further validation.
CAO Yongpan, CHAO Zhenhua, CHE Tao, QIN Chun, WU Yueru,
The dataset of surface roughness measurements was obtained in the reed plot A, the saline plots B and C of the Linze grassland foci experimental area on Jun. 7, 18 and 25, 2008. All the quadrates were divided into 4×4 subsites, with each one spanning a 120×120 m2 plot. With the roughness plate 110cm long and the measuring points distance 1cm, the samples were collected from south to north and from east to west, respectively. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The original photos of each sampling point, surface height standard deviation (cm) and correlation length (cm) were included this dataset. The roughness data were initialized with the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 needles is also included for further checking.
CAO Yongpan, GE Chunmei, WANG Shuguo, WANG Xufeng, WU Yueru, FENG Lei, YU Fan, WANG Jing
The dateset of surface roughness measurements was obtained in the Biandukou foci experimental area. With the roughness grid board 110cm long and the measuring intervals of 1cm, the samples were collected along the soil surface from south to north and from east to west, respectively. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The original photos of each sampling point, surface height standard deviation (cm) and correlation length (cm) were included. The roughness data files were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 needles is also included for further checking.
CAO Yongpan, WANG Jian, Wang Weizhen, WANG Xufeng, LIANG Xingtao, ZHANG Yongpan, Zhao Tianjie
The dataset of surface roughness was obtained at the super site (100m×100m, pure Qinghai spruce) around the Dayekou Guantan forest station. 25 corner points and 16 center points were collected and each point was measured twice and photos were taken. With the roughness plate 110cm long and the measuring points distance 1cm, the samples were collected along the strip from south to north and from east to west, respectively. The photos were processed using ArcView software; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 radius is also included for further checking. Those provide reliable ground data for improving and verifying the remote sensing algorithms.
BAI Yunjie, CAO Yongpan, CHE Tao, CHEN Ling, Qu Yonghua, ZHOU Hongmin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn