The data of water use scenario analysis in heihe river basin is mainly used in water right management model. Space scope: sunan county, ganzhou district, minle county, linze county, gaotai county, shandan county, jinta county, ejin na, suzhou district, jiayuguan; Time frames: 2020 and 2030 Data content: forecast water consumption (tons) Number of transfers: 9kb
WANG Zhongjing, ZHENG Hang
The data set include crop leaf stomatal conductance observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop leaf stomatal conductance, a key biophysical parameter, was observed as model parameter or a priori knowledge for crop growth model, or evapotranspiration estimation. 2) Measuring instruments Leaf porometer. 3) Measuring site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The crop leaf stomatal conductance for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the Super Station The crop leaf stomatal conductance at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. c. the Shiqiao sample site The crop leaf stomatal conductance at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.
Xu Fengying, Wang Jing, Huang Yongsheng, LI Xin, MA Mingguo
The dataset includes two parts that are: 1) channel flow, crop pattern, field management, and socio-economy data measured at super-station in 2008, 2010, 2011, 2012 (UTC+8), respectively. 2) irrigation data, crop pattern, and socio-economy data investigated at Daman irrigation district and Yingke irrigation district, respectively. 1.1 Objective of investigation Objectives of investigation for two parts data are to obtain crop pattern and irrigation water volume change with time, and to supply parameter for irrigation water optimal allocation model. 1.2 Investigation spots and items Investigation spots include six water management stations that are Dangzhai, Hua’er, Daman, Xiaoman, Jiantan, and Ershilidun, respectively, at Daman irrigation district. Investigation items comprise water allocation time, branch channel inflow, Dou channel inflow, irrigation area, channel water use efficiency, water price, and water fee. Investigation time is described as followed: 2012.03.16 to 2012.04.04, Spring irrigation; 2012.04.04 to 2012.05.14, Summer irrigation; 2012.05.20 to 2012.06.24, Summer irrigation; 2012.05.16 to 2012.07.06, Summer irrigation; 2012.07.15 to 2012.08.02, Autumn irrigation; 2012.08.10 to 2012.08.26, Autumn irrigation. Investigation spots include eight water management station that are Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, and Yangou, respectively, at Yingke irrigation district. Investigation time and items is described as followed: Year Data items Spots 2008, 2010, 2011 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Xiaoman county, Shangtouzha village 2012 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, Yangou 2012 Well data: Well deep, groundwater abstraction, irrigation area Chang’an, Liangjiadun, Shangqin 2012 Socio-economy data: population, agricultural income, un-agricultural income, water use for living, average residential area, education Chang’an, Xiaoman, Liangjiadun, Shangqin 2012 Field management: fertilizer name, fertilization time, fertilization rate, pesticide name, pesticide rate, time Chang’an, Xiaoman, Liangjiadun, Shangqin 2008, 2010, 2011, 2012 Crop pattern: crop name, seed time, harvest time, crop area, irrigation quota, field water use efficiency, crop yield, crop production value Xiaoman, Chang’an, Liangjiadun, Shangqin 1.3 Data collection Data was collected by cooperating with water management department of Yingke and Daman.
GE Yingchun, Xu Fengying, LI Xin
This dataset provides the estimated results of land cover change (IGBP classification) in 2040, 2070 and 2100 of Heihe River under the latest cmip5 based greenhouse gas emission scenario RCPs (representative concentration pathways). Spatial resolution: 1km. Time period: RCP (2.6, 4.5, 8.5) three scenarios, each scenario corresponding to three time periods: t1:2040, t2:2070, t3:2100. File naming rules: take "HLCs rcp26_" as an example to explain: in the naming, "HLCs" refers to the land cover scenario of Heihe River Basin, rcp26 refers to the rcp2.6 scenario of cmip5, "_40" refers to the future scenario period of 2040, the complete file name means the land cover prediction data of Heihe River Basin in 2040 under the rcp26 scenario, and so on.
FAN Zemeng, YUE Tianxiang
Water demand in the middle and lower reaches of Heihe River (mainly including water demand for living, livestock, industry, agriculture, tertiary industry, artificial forest and grass ecology in the middle reaches of Heihe River in current year, 2020 and 2030; water demand for living, industry, tertiary industry and ecology in Ejina Banner in the middle reaches of Heihe River in current year, 2020 and 2030)
JIANG Xiaohui
Input and output table of Heihe River Basin in Gansu Province in 2002 and 2007, including 144 departments
DENG XiangZheng
Data investigation method: obtained from investigation of Heihe River Basin Authority. Summary of data content: data of water consumption of Heihe, Shiyang and Shule River Basins in 1980, 1985, 1990, 2000, 2005, 2009 and 2009, including industrial water and agricultural water. Data temporal and spatial range: Heihe, Shiyang and Shule river basins 1980, 1985, 1990, 2000, 2005, 2009 and 2009.
WANG Zhongjing
Data source: survey data of Heihe River Basin Authority; Data introduction: in 2010, Sunan County, Ganzhou District, Minle County, Linze County, Gaotai County, Shandan County, Jinta County, Ejina, Suzhou District and Jiayuguan used water for living, industry, agriculture, urban and rural ecology.
WANG Zhongjing
Data analysis method: macroeconomic development forecast Space scope: Sunan County, Ganzhou District, Minle County, Linze County, Gaotai County, Shandan County, Jinta County, Ejina, Suzhou District, Jiayuguan Time frame: 2020, 2030 Data: GDP (1 million yuan), GDP growth rate, primary production (1 million yuan), primary production growth rate, secondary production (million yuan), secondary production growth rate, tertiary production (million yuan), tertiary production growth rate, primary production rate Second rate, third rate
WANG Zhongjing
Industrial transformation refers to the state or process of significant changes in industrial structure, industrial scale, industrial organization, industrial technology and equipment in the main composition of a country or region's national economy. From this point of view, industrial transformation is a comprehensive process, including industrial transformation in structure, organization and technology. Another explanation refers to the reallocation of resource stock among industries in an industry, that is, the process of transferring capital, labor and other production factors from declining industries to emerging industries Data include industrial output impact data of water resources industrial structure adjustment (primary industry technology, secondary industry technology, tertiary industry technology)
DENG XiangZheng
Water resources bulletin is a comprehensive annual report reflecting the situation of water resources. It is the basic work of unified planning, management and protection of water resources. It is an important basis for the preparation of national economic and social development planning, and also an important responsibility of water administrative departments. The contents of the water resources bulletin include precipitation, surface water resources, groundwater resources, total water resources, water storage dynamics, social and economic indicators, water supply, water consumption, water consumption, water use indicators, water pollution overview and important water affairs, etc. data and information are provided according to administrative divisions and flow area divisions respectively. The data set contains various statistical data of Gansu Provincial Water Resources Bulletin from 2000 to 2011.
DENG XiangZheng
Through the questionnaire survey of different water users in Zhangye City, the data on the implementation of water-saving society construction policies in Zhangye City are sorted out. The survey is mainly carried out on farmers and urban residents in all counties under Zhangye City's jurisdiction. The main contents include: people's awareness of water resources, water pollution, water-saving policies and willingness to participate in water conservation; The social and economic situation, gender, age, educational level, occupation, etc. of the interviewees. Survey objects: urban and rural residents over 18 years old in Minle County, Shandan County, Ganzhou District, Linze County, Gaotai County and Sunan County of Zhangye City.
ZHANG Zhiqiang
"Hydrologic - ecological - economic process coupling and evolution of heihe Basin governance under the framework of water rights" (91125018) project data exchange 4-basin-plan-mdb 1. Data overview: a watershed plan revision for the Murray darling river in Australia, adopted in 2012, for catchment comparisons 2. Data content: the public plan
WANG Zhongjing
Irrigation area data of Zhangye City from 1999 to 2011, including total irrigation area (effective irrigation area, forest irrigation area, orchard irrigation area, forage irrigation area and other irrigation areas), water-saving irrigation area (sprinkler irrigation area, micro irrigation area, low-pressure pipe irrigation area, canal seepage prevention area and other water-saving irrigation areas), effective irrigation area data, and Ganzhou District, Shandan District Corresponding data of county, Gaotai County, Sunan County, Linze County and Minle County
ZHANG Dawei
Input output table of 11 districts and counties in Heihe River Basin in 2012
DENG XiangZheng
Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin
DENG XiangZheng
Zhangye basin mainly includes 20 irrigation areas. Under the restriction of water diversion, the surface water consumption of the irrigation area is under control, but the groundwater exploitation is increased, resulting in the groundwater level drop in the middle reaches, resulting in potential ecological environment risks. Due to the complex and frequent exchange of surface water and groundwater in the study area, it is possible to realize the overall water resource saving by optimizing the utilization ratio of surface water and groundwater in each irrigation area. In this project, on the premise of not changing the water demand of the middle reaches irrigation area, the two problems of maximizing the outflow of Zhengyi Gorge (given groundwater reserve constraint) and maximizing the outflow of Zhengyi Gorge (given groundwater reserve constraint) are studied.
ZHENG Yi
"Coupling and Evolution of Hydrological-Ecological-Economic Processes in Heihe River Basin Governance under the Framework of Water Rights" (91125018) Project Data Convergence-MODIS Products-Land Use Data in Northwest China (2000-2010) 1. Data summary: Land Use Data in Northwest China (2000-2010) 2. Data content: Land use data of Shiyanghe River Basin, Heihe River Basin and Shulehe River Basin in Northwest China from 2000 to 2010 obtained by MODIS
WANG Zhongjing
1. Data overview Take Ganzhou District, Linze County and Gaotai County of Zhangye City in the middle reaches of Heihe River Basin as the research area, and carry out input-output survey on agricultural, industrial and service enterprises and individuals in the research area from May to November 2013. According to the survey data, use the survey method to compile the input-output table of 42 departments in 2012 in this area. 2. The data content Data mainly reflects the input-output of various national economic industries in the process of production, circulation and consumption in ganlingao region in 2012.
XU Zhongmin, SONG Xiaoyu
1. Data overview Based on the collected statistical yearbooks and survey data of counties and districts in Zhangye City in the middle reaches of Heihe River, the social and economic database in the middle reaches is constructed to reflect the basic situation of regional social economy. 2. Data content The database includes two data sets: (1) statistical yearbook data; (2) survey data of human factors in river basin. The statistical yearbook data mainly includes a number of relevant statistical data such as the gross product, financial revenue, construction of villages and towns, industrial output value, grain output, etc. of Zhangye City and its towns. The survey data of human factors in Heihe River Basin mainly include the survey data of social capital, cultural theory, happiness index and sustainable consumption in Heihe River Basin. 3. Time and space The statistical yearbook data is the statistical data of Ganzhou District, Linze County, Gaotai County, Sunan County, Shandan County, Minle county and towns under the jurisdiction of each county from 1990 to 2010. The survey data of human factors in the basin is the corresponding survey data of counties in the upper, middle and lower reaches in 2005.
XU Zhongmin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn