The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.
YU Wenping, WANG Zengyan, MA Mingguo
Data source: China l Meteorological Administration Network; Data Content: Daily Rainfall Data Series of Heihe River Basin from 1990 to 2004; Evaporation Data of Heihe River Basin from 2000 to 2012. Data Spatial Range: Rainfall Data (Yingluoxia, Shandan, Gaoya, Pingchuan, Ganzhou Pingshan Lake, Zhengyixia Gorge, Liyuan River); Evaporation Data (Zhangye, Gaotai, Dingxin, Jiuquan, Jinta, Shandan, Ejina, Hequ)
WANG Zhongjing, ZHENG Hang
This dataset includes 5 sub-datasets obtained from measurements in the flux observing matrix at observing site No.15 (the Daman superstation) and 13. Specifically, the sub-datasets include the following: (1) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic and flux ratio measurements from site No.15 from 27 May to 21 September in 2012, (2) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 from 27 May to 21 September 2012, (3) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic ratios at site No.13 when airborne surveys occurred, and (4) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No.13 and 15 when airborne surveys occurred, (5) a dataset that contains the ratios of evaporation and transpiration to evapotranpiration at site No.15. The experiment area was located in a corn cropland in the Daman irrigation district of Zhangye, Gansu Province, China. The positions of observing sites No.15 and 13 were 100.3722° E, 38.8555° N and 100.3785° E, 38.8607° N, respectively, with an elevation of 1552.75 m above sea level. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 were continuously measured using an in situ observation system. The system consisted of an H218O, HDO and H2O analyzer (Model L1102-i, Picarro Inc.), a CTC HTC-Pal liquid auto sampler (LEAP Technologies) and a multichannel solenoid valve (Model EMT2SD8 MWE, Valco Instruments CO. Inc.). The heights of the two intakes were 0.5 and 1.5 m above the corn canopy. The water vapor D/H and 18O/16O isotopic ratio analyzer recorded signals at 0.2 Hz; data were recorded for 2 minutes per intake. The data were block-averaged to hourly intervals. The sampling frequency of soil and xylem at site No. 15 was 1-3 days. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.13 were measured using a cold traps/mass spectrometer. The sampling frequency of atmospheric water vapor, soil water and xylem water at site No.13 was the same as that of the airborne surveys. Briefly, the Picarro analyzer measurements were calibrated during every 3 h switching cycle using a two-point concentration interpolation procedure in which the water vapor mixing ratio was dynamically controlled to track the ambient water vapor mixing ratio. Possible delta stretching effects were not considered. A schematic diagram of the Picarro analyzer and its operation principles and calibration procedure are described elsewhere in the literature (Huang et al., 2014; Wen et al. 2008, 2012). The dataset of atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Number (available record number), δD for r1 (δD for the lower intake, ‰), δD for r2 (δD for the higher intake, ‰), δ18O for r1 (δ18O for the lower intake, ‰), δ18O for r2 (δ18O for the higher intake, ‰), vapor mixing ratio for r1 (vapor mixing ratio for the lower intake, mmol/mol), vapor mixing ratio for r2 (vapor mixing ratio for the higher intake, mmol/mol), δET_D (δD of evapotranspiration, ‰), and δET_18O (δ18O of evapotranspiration, ‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; soil with male corns (F)=3; Xylem=4), δD (‰), and δ18O (‰). The dataset for the ratio of soil evaporation and transpiration to the evapotranspiration at site 15 includes the following variables: Timestamp (time, timestamp without time zone), E/ET (ratio of soil evaporation to the evapotranspiration, %), and T/ET (ratio of transpiration to the evapotranspiration, %). The mean (±one standard deviation) ratio of transpiration to evapotranspiration was 86.7±5.2% (the range was 71.3 to 96.0%). The mean (±one standard deviation) ratio of soil evaporation to the evapotranspiration was 13.3 ±5.2% (the range was 4.0 to 28.7%). The dataset of atmospheric water vapor D/H and 18O/16O isotopic ratio at site No. 13 when airborne surveys occurred includes the following variables: Timestamp1 (start time, timestamp without time zone), Timetamp2 (end time, timestamp without time zone), Height (observation height, cm), δD (‰), and δ18O (‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No. 13 and 15 when airborne surveys occurred include the following variables, Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; Xylem=4), δD (‰), δ18O (‰), and Location (observing site 13 or 15) . The missing measurements were replaced with -6999. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Wen et al. (2016) (for data processing) in the Citation section.
WEN Xuefa, LIU Shaomin, LI Xin
The dataset of sun photometer observations was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas. 24 times observations were carried out by CE318 from BNU (at 1020nm, 936nm, 870nm, 670nm and 440nm, and column water vapor by 936 nm data) and from Institute of Remote Sensing Applications, CAS (at 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data) on May 20, 23, 25 and 27, Jun. 4, 6, 16, 20, 22, 23, 27 and 29, Jul. 1, 7 and 11, 2008. Those atmospheric measurements synchronized with airborne (i.e. WiDAS, OMIS) and spaceborne sensors (i.e. TM, ASTER,CHRIS and Hyperion) Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters. Field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see Geometric Positions and the Total Optical Depth of Each Channel and Rayleigh Scattering and Aerosol Optical Depth of Each Channel).
REN Huazhong, YAN Guangkuo, GUANG Jie, SU Gaoli, WANG Ying, ZHOU Chunyan
1. Data overview: This data set is eddy covariance Flux data of qilian station from January 1, 2012 to December 31, 2012. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration co2 (mg/m^3), water vapor concentration h2o (g/m^3), pressure press (KPa), etc.The data is 30min Flux data. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
The dataset of sun photometer observations was obtained in Linze grassland station, the reed plot A, the saline plot B, the barley plot E, the observation stationof the Linze grassland foci experimental areaand Jingdu hotel of Zhangye city. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318 from May 30 to Jun. 11, 2008. And from Jun. 15 to Jul.11, the data of 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were acquired. Both measurements were carried out at intervals of 1 minute. Optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, air temperature and pressure near land surface, the solar azimuth and zenith could all be further retrieved. Readme file was attached for detail.
LIANG Ji, WANG Xufeng
1. Data overview: This data set is eddy covariance Flux data of qilian station from January 1, 2013 to December 31, 2013. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration co2 (mg/m^3), water vapor concentration h2o (g/m^3), pressure press (KPa), etc.The data is 30min Flux data. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
1. Data overview: Eddy covariance system is a micrometeorological measurement method.It USES the principle of vorticity correlation to measure the material exchange and energy exchange of the atmosphere cushion surface with a fast response sensor.The core of open circuit eddy covariance system is composed of CR1000 data collector, CSAT3 3d ultrasonic wind speed and direction sensor, and li-7500 open circuit CO2/H2O gas analyzer (EC150).The eddy covariance system is a newly purchased instrument of this project, which takes a long time to order. It was installed in early October 2011, and the data is relatively short.This data set is the vorticity covariance data of qilian station from October 1, 2011 to December 31, 2011 at 30min. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration (mg/m^3), water vapor concentration (g/m^3), pressure press (KPa).The data sampling rate is 10Hz per second. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
ET(Evapotranspiration)monitoring is essential for agricultural water management, regional water resources utilization planning, and socio-economic sustainable development.The limitations of the traditional monitoring ET method are mainly that large-area simultaneous observations cannot be made and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and it is unable to provide ET data on the surface, nor to provide the ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by remote sensing. The characteristics of remote sensing information are that it can reflect both the macroscopic structural characteristics of the Earth's surface and the microscopic local differences. Monthly evapotranspiration datasets (2000-2013) with 30m spatial resolution over oasis in the Middle Reaches of Heihe River Basin Version 1.0 are based on multi-source remote sensing data. The latest ET Watch model is used to estimate the raster image data. Its temporal resolution is monthly and spatial resolution is 30 meters. The data cover the middle reaches of Zhangye oasis area in millimeters. The data types include month, quarter, and year data. The projection information of the data is as follows: Albers equivalent conical projection, Central meridian: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinate west deviation: 4000000 meters. The file naming rules are as follows: Monthly cumulative ET value file name: heihe-midoasis-30m_2013m01_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, m01 indicates January, eta indicates actual evapotranspiration data, and tif indicates that the data is in tif format; The ET value file for each season is named: heihe-midoasis-30m_2013s01_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, s01 indicates 1-3 months, for the first quarter, eta indicates actual evapotranspiration data, and tif indicates that the data is in tif format; The annual cumulative value file name: heihe-midoasis-30m_2013y_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, y indicates the year, eta indicates the actual evapotranspiration data, and tif indicates that the data is in tif format.
WU Bingfang
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 22, 2008. Observation items included: (1) Albedo by the shortwave radiometer in Huazhaizi desert No. 2 plot. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (2) BRDF of maize in Yingke oasis maize field by ASD (350-2 500 nm) from Beijing University and the observation platform of BNU make. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°; BRDF in Huazhaizi desert No. 2 plot by ASD from Institute of Remote Sensing Applications (CAS) and the observation platform of its own make, whose maximum height was 2m above the ground with the zenith angle -70°~70°. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, GUO Xinping, REN Huazhong, ZOU Jie, LIU Sihan, ZHOU Chunyan, FAN Wenjie, TAO Xin
This data set contains the eddy related data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. For more information, see the documentation that came with the data.
Zhangye city meteorological bureau
The dataset of ground truth measurements synchronizing with ASTER was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 28, 2008. Observation items included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Photosynthesis by LI-6400. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (5) the radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 using ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), 3 for maize canopy, the bare land and wheat canopy in Yingke oasis maize field, one for maize canopy in Huazhaizi desert maize field, and 2 for vegetation and the desert bare land in Huazhaizi desert No. 2 plot,at nadir at a time interval of one second. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format. (9) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (10) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), Huazhaizi desert maize field (the transect observation) and Huazhaizi desert No. 2 plot (the diagonal observation) by the handheld infrared thermometer (BNU and Institute of Remote Sensing Applications). Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived.
CHAI Yuan, CHEN Ling, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jianhua, SHU Lele, LI Li, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, ZHOU Mengwei, TAO Xin, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dateset of sun photometer observations was obtained in the Biandukou foci experimental area from Mar. 7 to 17, 2008, simultaneous with MODIS and TM. Those provide reliable data for atmosphere correction of the same period in this area. Atmospheric parameters were measured by CE318. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired. Column water vapor can also be retrieved according to data in 936 nm. The dataset archived in txt files includes processed data on Mar. 7, 14 and 17 respectively.
SU Gaoli
The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 16, 2008. Observation items included: (1) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 2 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (2) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (4) The reflectance spectra by ASD through the vertical canopy observation and the transect observation in Yingke oasis maize field (350-2500nm , from BNU), and Huazhaizi desert maize field and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (one from BNU and the other from Institute of Remote Sensing Applications), Huazhaizi desert maize field (only one from BNU for continuous radiative temperature of the maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). Raw data, blackbody calibrated data and processed data were all archived in Excel format. (6) Photosynthesis of maize and wheat of Yingke oasis maize field by LI6400, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (7) Soil moisture in Yingke oasis maize field. The sample was fetched by the soil auger and weighed by the scales before and after drying. Data were archived in Excel format. (8) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.
CHEN Ling, REN Huazhong, ZHOU Hongmin, CAO Yongpan, SHU Lele, WU Yueru, XU Zhen, LI Li, LIU Sihan, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, FAN Wenjie, TAO Xin, FENG Lei, LIANG Wenguang, YU Fan, WANG Dacheng, YANG Guijun, LI Xiaoyu, Liu Liangyun
The dataset of ground truth measurement synchronizing with Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 20, 2008. Observation items included: (1) LAI in Yingke oasis maize field. The maximum leaf length and width of each alfalfa and barley were measured. Data were archived in Excel format. (2) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) the radiative temperature by 3 handheld radiometers in Yingke oasis maize field (Institute of Remote Sensing Applications, BNU and Institute of Geographic Sciences and Natural Resources respectively, the vertical canopy observation and the transect observation), and by 3 handheld infrared thermometers in Huazhaizi desert No. 2 plot (the vertical vegetation and bare land observation). The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (4) the radiative temperature of maize, wheat and the bare land of Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (5) Photosynthesis of maize, wheat and the bare land of Yingke oasis maize field by LI6400, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (6) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (7) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Coverage fraction of Reaumuria soongorica by the self-made coverage instrument and the camera (2.5m-3.5m above the ground) in Huazhaizi desert No. 2 plot. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS data was used for the location and the technology LAB was used to retieve the coverage fractionof the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the vegetation iamge and coverage (by .exe). (9) The radiative temperature of Reaumuria soongorica canopy and the bare land by 2 fixed automatic thermometers (FOV: 10°; emissivity: 0.95) in Huazhaizi desert No. 2 plot, observing straight downwards at intervals of 1s. Raw data, blackbody calibrated data and processed data were all archived in Excel format.
CHAI Yuan, CHEN Ling, KANG Guoting, LI Jing, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jindi, XIAO Zhiqiang, YAN Guangkuo, SHU Lele, GUANG Jie, LI Li, Liu Qiang, LIU Sihan, XIN Xiaozhou, ZHANG Hao, ZHOU Chunyan, TAO Xin, YAN Binyan, YAO Yanjuan, TIAN Jing, LI Xiaoyu
The dataset of sun photometer observations was obtained in the Zhangye city foci experimental areas (38°56′8.9″N, 100°27′8.3″E, 1400m) from Mar. 30 to Apr. 2, 2008. Measurements were carried out by CE318 for 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data on Mar. 30 and 31, Apr. 1 and 2, 2008. Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters need correcting. Thus field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see “Geometric Positions and the Total Optical Depth of Each Channel” and “Rayleigh Scattering and Aerosol Optical Depth of Each Channel”).
FANG Li, SU Gaoli
The dataset of evapotranspiration observed by micro-lysimeter was obtained in the reed plot A, the alfalfa plot D and the barley plot E of the Linze grassland foci experimental area from May 28 to Jul. 12, 2008. Observations were carried out from 6:00-8:00 am and from 18:00-20:00 pm every day with exceptions on afternoons of Jun. 5, 8, 9, 13 and 24, mornings of Jun. 14 and Jul. 2, the whole day from Jun. 16 to Jul.8 (alfalfa plot) and from Jun. 21 to 22 (the reed plot.) For more details, see Readme file.
CAO Yongpan, CHAO Zhenhua, HAN Xujun, HUANG Chunlin, NIAN Yanyun, WANG Shuguo, WANG Xufeng, ZHU Shijie, YU Fan, LI Xiaoyu
From June 10, 2011 to September 2, 2011, the observation instrument of 3100m grassland weather station in Tianlaochi watershed of Qilian mountain was a 20cm evaporating pan, a round metal basin with a diameter of 20 cm and a height of 10 cm, and the mouth of the basin was blade-shaped. In order to prevent birds and animals from drinking water, a trumpet-shaped wire mesh ring was set on the upper part of the mouth of the vessel. During measurement, the instrument shall be placed on the shelf with the mouth 70cm from the ground, and quantitative clear water shall be put in every day. After 24 hours, the remaining water quantity shall be measured by the dosage cup, and the reduced water quantity shall be the evaporation capacity. Data are daily evaporation from June 10, 2011 to September 2, 2011.
ZHAO Chuanyan, MA Wenying
The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.
Gansu meteorological bureau, Qinghai Meteorological Bureau
The dataset of GPS radiosonde observations was obtained at an interval of 2 seconds in the cold region hydrology experimental area in March, 2008 and the arid region hydrology experimental area from May to July, 2008. The items were the air temperature, relative humidity, air pressure, the dew temperature, the water vapor mixing ratio, latitudinal and longitudinal wind speeds, the wind speed and direction. Simultaneous with the satellite/airplane overpass, GPS radiosonde observations were carried out: Binggou watershed on Mar. 14, A'rou on Mar. 15, Binggou watershed on Mar. 15, Biandukou on Mar. 17, Binggou watershed on Mar. 22, Binggou watershed on Mar. 29, and A'rou on Apr. 1 for the upper stream experiments; Linze grassland station on May 30, Yingke oasis on Jun.1, Huazhaizi desert station on Jun. 4, Linze grassland station on Jun. 5, Linze grassland station on Jun. 6, Huazhaizi desert station on Jun. 16, Yingke oasis on Jun. 29, Binggou watershed on Jul. 5, Yingke oasis on Jul. 7, Linze grassland station on Jul. 11, and Yingke oasis at 0, 4:10, 8:09, and 12:09 on Jul. 14 for middle stream experiments.
GU Lianglei, HU Zeyong, LI Maoshan, MA Weiqiang, SUN Fanglei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn