The data set includes soil pH data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The surface air temperature dataset of the Tibetan Plateau is obtained by downscaling the China regional surface meteorological feature dataset (CRSMFD). It contains the daily mean surface air temperature and 3-hourly instantaneous surface air temperature. This dataset has a spatial resolution of 0.01°. Its time range for surface air temperature dataset is from 1979 to 2018. Spatial dimension of data: 73°E-106°E, 23°N-40°N. The surface air temperature with a 0.01° can serve as an important input for the modeling of land surface processes, such as surface evapotranspiration estimation, agricultural monitoring, and climate change analysis.
DING Lirong, ZHOU Ji, WANG Wei , MA Jin
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
SHER Muhammad
The data set includes soil bulk density data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil organic carbon concentrations data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Sidaoqiao mixed forest station from January 1 to December 31, 2018. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (28 m, north), wind speed and direction profile (28 m, north), air pressure (in tamper box), rain gauge (28 m, south), four-component radiometer (24 m, south), two infrared temperature sensors (24 m, south, vertically downward), two photosynthetically active radiation (24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m), and soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100, Ts_160, Ts_200, Ts_240 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100, Ms_160, Ms_200, Ms_240 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the power loss of datalogger, there were occasionally data missing during January 1 to 9, and November 10 to December 14; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
Soil bulk density, porosity, water content, water characteristic curve, saturated hydraulic conductivity, particle analysis, infiltration rate, and sampling point location information in the upper reaches of the Heihe River Basin. 1. The data is for 2014 supplementary sampling for 2012, using the ring knife to take the original soil; 2. The soil bulk density is the dry bulk density of the soil and is measured by the drying method. The original ring-shaped soil sample collected in the field was thermostated at 105 ° C for 24 hours in an oven, and the soil dry weight was divided by the soil volume (100 cubic centimeters) , unit: g/cm 3 . 3. Soil porosity is obtained according to the relationship between soil bulk density and soil porosity; 4. Soil infiltration analysis data set, the data is the field experimental measurement data from 2013 to 2014. 5. The infiltration data is measured by “MINI DISK PORTABLE TENSION INFILTROMETER”, and the approximate saturated hydraulic conductivity under a certain negative pressure is obtained. 6. Soil particle size data was measured at the Grain Granulation Laboratory of the Key Laboratory of the Ministry of Education of Lanzhou University. The measuring instrument is a Malvern laser particle size analyzer MS2000. 7. The saturated hydraulic conductivity is measured according to the enamel hair self-made instrument of Yi Yanli (2009). The Marioot bottle was used to maintain the head during the experiment; at the same time, the Ks measured at the time was converted to the Ks value at 10 °C for analysis and calculation. 8. Soil water content data is measured using ECH2O, including 5 layers of soil water content and soil temperature. 9. The water characteristic curve is measured by the centrifuge method: the undisturbed soil of the ring cutter collected in the field is placed in a centrifuge, and each of the speeds is measured at 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200, 11600. The secondary rotor weight is obtained.
HE Chansheng
This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during February 7 to 11, 2018 were missing due to the power loss. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Dashalong station from January 1 to December 31, 2018. The site (98.941° E, 38.840° N) was located on a swamp meadow surface in the Longshatan, which is near west of Qilian county, Qinghai Province. The elevation is 3739 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (PTB110; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo, ZHANG Yang, XU Ziwei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huazhaizi desert steppe station from January 1 to December 31, 2018. The site (100.3201°E, 38.7659°N) was located on a desert steppe surface in the Huazhaizi, which is near Zhangye city, Gansu Province. The elevation is 1731 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed and direction profile (windsonic; 5 and 10 m, north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0 m), soil moisture profile (ML3; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_5 m and WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100 cm) (%). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the malfunction of soil moisture sensor, data during 1.1-1.7, 8.22-8.31, and 9.4-9.12 were missing; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were one German BLS900 at Sidaoqiao Superstation. The north tower was set up with the BLS900 receiver and the south tower was equipped with the BLS900 transmitter. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>7.58E-14). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The missing data from the BLS900 instrument were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (GCC), phenological phase and fractional cover (FC). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the flux measurements from the Dashalong station eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (98.9406° E, 38.8399° N) was located in the Qilian County in Qinghai Province. The elevation is 3739 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500RS) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during September 27 to November 14, 2018 were missing due to the sensor calibration of sonic anemometer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Arou Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Arou Superstation: BLS450 and zzlas, produced by Germany and China, respectively. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. The site (north: 100.471° E, 38.057° N; south: 100.457° E, 38.038° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled 1 minute at both BLS450 and zzlas. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Mininum X Intensity<50; zzlas: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the problems of storing and wireless transmission, data from 5 July to 24 August, were not collected. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System for soil moisture observation at the Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation area, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following variables: battery (Batt, V), temperature (T, C), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.
ZHU Zhongli, XU Ziwei, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo, ZHANG Yang
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 873 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Latent heat flux during November 9 to 21, 2018 were missing due to the sensor malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Yakou station from January 1 to December 31, 2018. The site (100.2421°E, 38.0142°N) was located on an alpine meadow surface, which is near west of Qilian county, Qinghai Province. The elevation is 4148 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (PTB110; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the sensor malfunction, the infrared temperature and wind direction were wrong during October 10 to November 17 and after August, respectively. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the A’rou superstation eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.372° E, 38.856° N) was located in the Daban Village, near Qilian County in Qinghai Province. The elevation is 3033 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Zhangye wetland station from January 1 to December 31, 2018. The site (100.4464° E, 38.9751° N) was located on a wetland (reed surface) in Zhangye National Wetland Park, Gansu Province. The elevation is 1460 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (03002; 5 and 10 m, north), wind direction profile (03002; 10 m, north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2 and -0.4 m), and four photosynthetically active radiation (PQS-1; two above the plants, 6 m, south, one vertically downward and one vertically upward; two below the plants, 0.25 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm and Ts_40 cm) (℃), on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the Yakou station eddy covariance system (EC) in the upper stream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.2421° E, 38.0142° N) was located in the Qilian County in Qinghai Province. The elevation is 4148 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The power loss occurs occasionally at this site. Data during May 24 to June 21, 2018 were missing due to the insufficient pow supply. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.44640° E, 38.97514° N) was located in the Zhangye City in Gansu Province. The elevation is 1460 m. The EC was installed at a height of 5.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Flux data during March 25 to May 10, 2018 were wrong to the sensor malfunction. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the Jingyangling station eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from August 28 to December 31 in 2018. The site (101.1160E, 37.8384N) was located in the Jingyangling, near Qilian County in Qinghai Province. The elevation is 3750 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the desert station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.9872° E, 42.1135° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 1054 m. The EC was installed at a height of 4.7 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during May 14 to June 26, 2018 were missing due to the data logger malfunction. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Daman Superstation: BLS450 and BLS900, produced by Germany. The north tower was set up with the BLS450 receiver and the BLS900 transmitter, and the south tower was equipped with the BLS450 transmitter and the BLS900 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 22.45 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS450 and BLS900. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>1.43E-13). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the BLS450 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Heihe remote sensing station from January 1 to December 31, 2018. The site (100.4756° E, 38.8270° N) was located on artificial grassland in Dangzhai Town of Zhangye, Gansu Province. The elevation is 1560 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (1.5 m, north), wind speed and direction (10 m, north), air pressure (2 m), rain gauge (0.7 m), four-component radiometer (1.5 m, south), two infrared temperature sensors (1.5 m, south, vertically downward), soil heat flux (3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6 m), and two photosynthetically active radiation (1.5 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_1.5, RH_1.5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm) (℃),on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of A’rou Superstation from January 1 to December 31, 2018. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed profile (010C; 1, 2, 5, 10, 15 and 25 m, towards north), wind direction profile (020C; 2 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 3 duplicates, -0.06 m, 2 m in the south of tower), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The average soil temperature was rejected during February 16 to March 31 and April 15 to May 20 because of broken of the sensor line; Soil heat flux were wrong occasionally during November to December. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the Daman superstation eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.37223° E, 38.85551° N) was located in the Zhangye City in Gansu Province. The elevation is 1556.06 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the desert station from January 1 to December 31, 2018. The site (100.9872°E, 42.1135°N) was located on a desert surface in the desert, which is near Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 1054 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (010C; 5 and 10 m, north), wind direction (020C, 10m), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0 m), soil moisture profile (ML3; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100 cm) (%). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Jingyangling station from January 1 to December 31, 2018. The site (101.116° E, 37.838° N) was located on a cold meadow surface in the Jingyangling, Qilian County, Qinghai Province. The elevation is 3750 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (5 m, north), wind speed and direction (10 m, north), air pressure (in the tamper box on the ground), rain gauge (10 m), four-component radiometer (6 m, south), two infrared temperature sensors (6 m, south, vertically downward), soil heat flux (3 duplicates, -0.06 m), soil temperature profile (0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (-0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the snow cover the solar panel causing insufficient power supply, data during December 13-21 were missing; due to the sensor malfunction, there were some NAN invalid values during May 29 to June 22 and July 16 to August 19 of the wind speed and direction; incorrect data of longwave radiation during December 13 to 31; incorrect data of 4 cm depth soil moisture during January 1 to 3 and April 1 to May 20; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the LAI measurements from the Daman superstation in the middle reaches of the Heihe integrated observatory network from June 11 to September 18 in 2018. The site (100.372° E, 38.856°N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. There are 3 observation samples, each of which is about 30m×30m in size, and the latitude and longitude ranges are (100.373297°E~100.374205°E, 38.857871°N~38.858390°N), (100.373918°E~100.373897°E, 38.854025°). N~38.854941°N), (100.368007°E~100.369044°E, 38.850678°N~38.851580°N). Five sub-canopy nodes and one above-canopy node are arranged in each sample. The LAI data is obtained from LAINet measurements following four steps: (1) the raw data is light quantum (level 0); (2) the daily LAI can be obtained using the software LAInet (level 1); (3) the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); (4) for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.
LIU Shaomin, Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the LAI measurements from the Sidaoqiao in the downstream of the Heihe integrated observatory network from June 16 to October 18 in 2018. The site was located in Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 870 m. There are 2 observation samples, around Sidaoqiao superstation (101.1374E, 42.0012N) and Mixed forest station (101.1335E, 41.9903N), each of which is about 30m×30m in size. Five sub-canopy nodes and one above-canopy node are arranged in each sample. The LAI data is obtained from LAINet measurements following four steps: (1) the raw data is light quantum (level 0); (2) the daily LAI can be obtained using the software LAInet (level 1); (3) the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); (4) for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the flux measurements from the Huazhaizi station eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.3201° E, 38.7659° N) was located in the Zhangye City in Gansu Province. The elevation is 1731 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during May 13 to July 12 and July 16 to August 21, 2018 were missing due to the malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This is the LAINet dataset measured in the corn field at the Xiaoman irrigation district (from 25 June, to 24 August, 2012). The time used in this dataset is in UTC+8 Time. Instrument: LAINet- A wireless sensor network for leaf area index measurement, Beijing Normal University Measurement Mode: LAINet observation system is formed by 3 kinds of sensor nodes, they are respectively (1) node below the canopy, sensors up-looking are used for measure the transmitted radiation through the canopy, which are deployed horizontally; (2) node above canopy: sensors up-looking are used for measure the total sun incident radiation, which are deployed horizontally; (3) sink or router node, which is designed for receiving and transmitting data measured by the above node and below node. Data Processing: the original data obtained from sensors is received by sink nodes, and forms the original dataset in days after pre-processed. The observation for transmittance of the canopy is acquired by calculating the ratio of the radiation through the canopy and the total incident radiation above the canopy at different sun elevation angles during a day. The retrieval of LAI is based on the multi-angle transmittance data. LAINet dataset is composed of original LAI data, LAI data after calculating the mean value in 5 days interval and the longitude and latitude of the measurement nodes. All the data are stored in the format of Excel. As for the data after calculating the mean value in 5 days, we take the number of aggregation nodes as the name of the sheet. Data saved in a sheet is from an sink node which receives the measurement data from the child nodes. The original data records the LAI of every node in the observation day. In the sheet of two kinds of data above, the meaning of the column is as follows: DOY, node one, node two, …, and node N.
MA Mingguo
On 1 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area. WIDAS includes a CCD camera with a spatial of resolution 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.
XIAO Qing, Wen Jianguang
On 3 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.
XIAO Qing, Wen Jianguang
On 26 July 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes a CCD camera with a spatial resolution of 0.2 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1 m), and a thermal image camera with a spatial resolution of 4.8 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.
XIAO Qing, Wen Jianguang
On 25 August and 28 August, 2012, a RCD30 camera of Leica Company boarded on the Y-12 aircraft was used to obtain CCD image. RCD30 camera has a focal length of 80 mm and four bands including red, green, blue and near-infrared bands. The absolute flight altitude is 4800 and 5200 m, and ground sample distance is 6-19 cm. The product includes TIF images and exterior orientation elements.
XIAO Qing, Wen Jianguang
On 19 August 2012, a RCD30 camera of Leica Company boarded on the Y-12 aircraft was used to obtain the CCD image. RCD30 camera has a focal length of 80 mm and four bands including red, green, blue and near-infrared bands. The absolute flight altitude is 2900 m and ground sample distance is 10 cm. The data includes TIF images and exterior orientation elements.
XIAO Qing, Wen Jianguang
On 2 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes a CCD camera with a spatial resolution of 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with a spatial resolution of 6.3 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.
XIAO Qing, Wen Jianguang
On 25 August 2012, a RCD30 camera of Leica Company boarded on the Y-12 aircraft was utilized to obtain the optical remote sensing data. RCD30 camera has a focal length of 80 mm and four bands including red, green, blue and near-infrared bands. The absolute flight altitude is 5200 m and ground sample distance is 6-19 cm. The product includes TIF images and exterior orientation elements.
XIAO Qing, Wen Jianguang
On 25 August 2012, a RCD30 camera of Leica Company boarded on the Y-12 aircraft was used to obtain the CCD image. RCD30 camera has a focal length of 80 mm and four bands including red, green, blue and near-infrared bands. The absolute flight altitude is 4800 m and 5200 m, and ground sample distance is 8-19 cm. The product includes TIF images and exterior orientation elements.
XIAO Qing, Wen Jianguang
The data set contains eddy covariance System observation data of Daman super station which is located in the middle reaches of the Heihe Hydro-meteorological Observation Network from January 1, 2017 to December 31, 2017. The site is located in Daman Irrigation District, Zhangye, Gansu Province, and the underlying surface is corn. The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m. The mount height of the Eddy Covariance System is 4.5 m, the sampling frequency is 10 Hz, the ultrasonic orientation is positive North, and the distance between the ultrasonic wind speed temperature meter (CSAT3) and the CO2/H2O analyzer (Li7500) is 17 cm. The original observation data of the Eddy Covariance System is 10 Hz, and the released data is a 30-minute data processed by Eddypro software. The main steps of the processing include: outlier eliminating, delay time correction, coordinates rotation (secondary coordinates rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. Meanwhile, the quality evaluation of each flux value was performed,mainly includes atmospheric stability (Δst) test and turbulence similarity (ITC) test. The 30-min flux value output of Eddypro software was also screened: (1) Data from the instrument error was eliminated; (2) Data obtained with one hour before and after precipitation was removed; (3) Data with a deletion rate greater than 10% of the 10 Hz raw data every 30 minutes was eliminated; (4) Observation data of weak turbulence at night (u* less than 0.1 m/s) was excluded. The average period of observation data is 30 minutes, 48 data per day, and the missing data is marked as -6999. The data of April 3 and 4 was missing due to Li7500 calibration of the eddy system; data from August 29 to September 5 was missing due to collector problem. Published observation data include: Date/Time, wind direction(°), horizontal wind speed(m/s), lateral wind speed standard deviation(m/s), ultrasonic virtual temperature (°C), water vapor density (g/m3), carbon dioxide concentration(mg/m3), friction velocity (m/s), length (m), sensible heat flux(W/m2), latent heat flux (W/m2), carbon dioxide flux (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average data of 0:00-0:30; the data is stored in *.xls format. For hydro-meteorological network or station information, please refer to Liu et al. (2018). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains data from January 1, 2017 to December 31, 2017 from the meteorological element gradient observation system of alu superstation, upstream of the heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The air temperature, relative humidity and wind speed sensors are located at 1m, 2m, 5m, 10m, 15m and 25m respectively, with a total of six layers facing due north.The wind direction sensor is located at 10m, facing due north;The barometer is installed at 2m;The tilting rain gauge is installed on the 28m observation tower of super aru station;The four-component radiometer is installed at 5m, facing due south;Two infrared thermometers are installed at 5m, facing due south, and the probe facing vertically downward.The photosynthetic effective radiometer is installed at 5m, facing due south, and the probe facing vertically upward.Part of the soil sensor is buried at 2m in the south direction of the tower body, and the soil heat flow plate (self-correcting formal) (3 pieces) are all buried at 6cm underground.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at the surface of 0cm and underground of 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm, among which the 4cm and 10cm layers have three repeats.The soil water sensor is buried underground 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm respectively, among which the 4cm and 10cm layers have three duplexes. The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The soil heat flux G1 was between 2017.1.1-2.28 and 2017.8.8-8.23, while the soil heat flux G3 was between 4.16-7.6. Due to sensor problems, data was missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-6-10:10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains meteorological element observation data of heihe remote sensing station in the middle reaches of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in the east of dangzhai town, zhangye city, gansu province.The longitude and latitude of the observation point are 100.4756e, 38.8270n and 1560m above sea level.The air temperature and humidity sensor is located at 1.5m, facing due north.The barometer is in the waterproof box;The tilting bucket rain gauge is installed at 0.7 m;The wind speed and direction sensor is located at 10m, facing due north;The installation height of the four-component radiometer is 1.5m, facing due south;The installation height of the two infrared thermometers is 1.5m, facing due south and the probe facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground.The soil water probe was buried at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm.Average soil temperature probes were buried in 2cm and 4cm;The soil heat flow plate (3 pieces) is buried 6cm underground.Two photosynthetically active radiometers were set up 1.5m above the canopy (one probe vertically upwards and one probe vertically downwards), facing due south. Observation projects are: air temperature and humidity (Ta_1. 5 m, RH_1. 5 m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (in:C), soil moisture (Ms_0cm, Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: %), upward and downward photosynthetically active radiation (PAR_U_up, PAR_U_down) (unit: micromole/sq.s), mean soil temperature (TCAV) (unit: Celsius). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-6-10:10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains observation data of cosmic-ray instrument (crs) from January 1, 2017 to December 31, 2017. The site is located in the farmland of Daman Irrigation District, Zhangye, Gansu Province, and the underlying surface is cornfield. The latitude and longitude of the observation site is 100.3722E, 38.8555N, the altitude is 1556 meters. The bottom of the instrument probe is 0.5 meter from the ground, and the sampling frequency is 1 hour. The original observation items of the cosmic-ray instrument include: voltage Batt (V), temperature T (°C), relative humidity RH (%), air pressure P (hPa), fast neutron number N1C (number / hour), thermal neutron number N2C (number / hour), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s). The data was released after being processed and calculated. The data includes: Date Time, P (pressure hPa), N1C (fast neutrons one/hour), N1C_cor (pressure-corrected fast neutrons one/hour) and VWC ( soil water content %), it was processed mainly by the following steps: 1) Data Screening There are four criteria for data screening: (1) Eliminating data with a voltage less than or equal to 11.8 volts ; (2) Eliminating data with a relative humidity greater than or equal to 80%; (3) Eliminating data with a sampling time interval not within 60 ± 1 minute; (4) Eliminating data with fast neutrons that vary by more than 200 in one hour. In addition, missing data is supplemented with -6999. 2) Air Pressure Correction The original data is corrected by air pressure according to the fast neutron pressure correction formula mentioned in the instrument manual, and the corrected fast neutron number N1C_cor is obtained. 3) Instrument Calibration In the process of calculating soil moisture, it is necessary to calibrate the N0 in the calculation formula. N0 is the number of fast neutrons under the situation with low antecedent soil moisture . Usually, soil samples in the source area are used to obtain measured soil moisture (or obtained by relatively dense soil moisture wireless sensors) θm (Zreda et al. 2012) and the fast neutron correction data N in corresponding time periods, then NO can be obtained by reversing the formula. Here, the instrument is calibrated according to the Soilnet soil moisture data in the source region of the instrument, and the relationship between the soil volumetric water content θv and the fast neutron is established. The data of June 26-27, and July 16-17, respectively, which have obvious differences in dry and wet conditions, were selected. The data from June 26 to 27 showed low soil moisture content, so the average of the three values of 4 cm, 10 cm and 20 cm was used as the calibration data, and the variation range was 22% to 30%; meanwhile , the data from July 16 to 17 showed high soil moisture content, so the average of the two values of 4cm and 10 cm was used as the calibration data, and the variation range was 28% - 39%, and the final average N0 was 3597. 4) Soil Moisture Calculation According to the formula, the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, XU Ziwei, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo
The data set contains meteorological element observation data from January 1, 2017 to December 31, 2017 from jingyangling station, upstream of heihe hydrological meteorological observation network.The station is located in jingyangling pass, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160e, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Some invalid values of 4cm soil moisture appeared in November and December.5.13-5.27 and 6.7-7.5, data is missing due to problems with the collector;7.17-8.17 problems with the wind speed sensor and missing data;Problems with the infrared temperature sensor and missing data;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains meteorological observation data of meteorological elements from January 1, 2017 to December 31, 2017 at guokou station on heihewen meteorological observation network.The station is located in da dong shu pass, qilian county, qinghai province.The latitude and longitude of the observation point are 100.2421E, 38.0142N, and 4148m above sea level.The published data include air temperature and relative humidity sensors set up at 5m, facing due north;The barometer is installed in an anti-skid box on the ground;The inverted bucket rain gauge is installed at 2m;Wind speed and direction sensors are set at 10m, facing due north;The four-component radiometer is at the meteorological tower 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground.The soil water probe is buried in the ground 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm.The soil hot plate is buried 6cm underground, due south of 2m from the weather tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2017-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the observation data of meteorological elements from the Dashalong Station,,which is located along the upper reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2017 to December 31, 2017. The station is located in Shalong Beach area on the west side of Qilian County, Qinghai Province. The underlying surface is swamp meadow. The latitude and longitude of the observation point is 98.9406E, 38.8399N, and the altitude is 3739m. The air temperature and relative humidity sensors are erected 5 meters above the ground, facing North; the barometer is installed in the pick-proof box on the ground; the tipping bucket rain gauge is erected 10 meters above the ground; the wind speed and direction sensor is set 10 meters above the ground, facing North; the four-component radiometer is installed 6 meters above the ground, facing South; two infrared thermometers are installed 6 meters above the ground, facing South, and the probe orientation is vertical downward; the soil temperature probes are buried respectively at 0cm on the ground surface, 4cm、10cm、20cm、40cm、80cm、120cm and 160cm under the ground, they are located 2 meters from the meteorological tower in the South; the soil moisture sensors are buried 4cm、10cm、20cm、40cm、80cm、120cm and 160cm under the ground, 2 meters from the meteorological tower in the South; the soil heat flow boards (3 pieces) are buried 6cm under the ground, 2 meters from the meteorological tower in the South. Observed items include: air temperature and humidity (Ta_5m, RH_5m) (unit: Celsius, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: meter / sec), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watt / square meter), surface radiation temperature (IRT_1, IRT_2) (unit: Celsius) , soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm , Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volumetric water content, percentage). Processing and quality control of observation data: (1) Ensure 144 data per day (every 10 minutes), if there is missing data, it is marked as -6999. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2017-9-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Liu et al. (2018). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the observation data of the eddy covariance system of Sidaoqiao superstation which is located along the lower reaches of the Heihe Hydrometeorological observation network, and the data set covers data from January 1, 2017 to December 31, 2017. The station is located in Sidao Bridge, Ejina Banner, Inner Mongolia, and the underlying surface is Tamarix. The latitude and longitude of the observation station is 101.1374E, 42.0012N, and the altitude is 873 m. The height of the eddy covariance system is 8 meters, the sampling frequency is 10Hz, the ultrasonic orientation is positive north, and the distance between the ultrasonic wind speed and temperature monitor (CSAT3) and the CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the eddy covariance system is 10 Hz, and the released data is a 30-minute data processed by Eddypro software. The main steps of the processing include: outlier eliminating, delay time correction, coordinates rotation (secondary coordinates rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. Meanwhile, the quality evaluation of each flux value was performed,mainly includes atmospheric stability (Δst) test and turbulence similarity (ITC) test. The 30-min flux value output of Eddypro software was also screened: (1) Data from the instrument error was eliminated; (2) Data obtained with one hour before and after precipitation was removed; (3) Data with a deletion rate greater than 10% of the 10 Hz raw data every 30 minutes was eliminated; (4) Observation data of weak turbulence at night (u* less than 0.1 m/s) was excluded. The average period of observation data is 30 minutes, 48 data per day, and the missing data is marked as -6999. The data was missing due to Li7500 calibration of the eddy system on April 7 and 8; the suspicious data caused by instrument drift and other reasons was marked by red fonts. Published observation data include: date/time Date/Time, wind direction(°), horizontal wind speed(m/s), lateral wind speed standard deviation(m/s), ultrasonic virtual temperature (°C), water vapor density (g/m3), carbon dioxide concentration(mg/m3), friction velocity (m/s), length (m), sensible heat flux(W/m2), latent heat flux (W/m2), carbon dioxide flux (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average data of 0:00-0:30; the data is stored in *.xls format. For hydrometeorological network or station information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains meteorological element observation data of huazhaizi desert station in the middle reaches of heihe hydrological meteorological observation network from January 1, 2017 to December 31, 2017.The station is located in huazhaizi, zhangye city, gansu province.The latitude and longitude of huazhaizi station is 100.3201E, 38.7659N and 1731m above sea level.The observation items include: air temperature and relative humidity sensors at 5m and 10m, facing due north;Install the barometer inside the waterproof box;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 5m and 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried 6cm underground.Specific observation elements are as follows: Air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage), and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data elements of observation data every day (every 10min), and mark by -6999 in case of data missing;From November to December 2017, due to wiring problems, there were discontinuous errors in long-wave radiation;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-6-10:10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the data of meteorological element gradient observation system of dashman superstation in the middle reaches of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to sensor problems, the soil heat flux G2 was wrong;Due to problems with the collector, the meteorological data were wrong;Part of soil data was wrong due to collector problem;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-6-10:10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains meteorological elements observation data of zhangye station in the middle reaches of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The site is located in zhangye national wetland park in gansu province.The latitude and longitude of the observation point is 100.4464E, 38.9751N, and altitude is 1460m.Air temperature and relative humidity sensors are set up at 5m and 10m, facing due north.The barometer is installed at 2m;The inverted bucket rain gauge is installed at 10m;The wind speed sensor is set up at 5m and 10m, and the wind direction sensor is set up at 10m, facing due north.The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm and 40cm underground, in the south due to 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm;Four photosynthetic radiometers are installed above and inside the canopy respectively. The upper part of the canopy is installed at 6m (one probe vertically up and one probe vertically down), and the upper part of the canopy is installed at 0.25m (one probe vertically up and one probe vertically down), facing due south. Observation items are: air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Degrees Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm) (unit: c), the canopy on the up and down photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2) and up and down under canopy photosynthetic active radiation (PAR_D_up, PAR_D_down) (unit: second micromoles/m2). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;Due to the power supply problem in January, the data was intermittently wrong;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2017-6-1010:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the observation data of vortex correlativity instrument at yakou station upstream of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in qilian county, qinghai province.The latitude and longitude of the observation point is 100.2421, 38.0142N, and the altitude is 4148 m.The height of the vortex correlation instrument is 3.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.April 13-14, instrument calibration, data missing.Suspicious data caused by instrument drift shall be identified in red.The eddy current correlator will be short of electricity at night in winter, resulting in the loss of data. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlativity observation data of the downstream desert station of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 100.9872e, 42.1135n and 1054m above sea level.The frame height of the vortex correlativity instrument is 4.7m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.The vortex correlator's Li7500 was calibrated on April 7-8, and the tower was re-reinforced on September 18-23, with data missing.Suspicious data caused by instrument drift, etc., shall be marked in red font.When 10Hz data is missing, the missing data is replaced by the 30-minute data output of the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the vortex correlativity instrument observation data of zhangye wetland station in the middle reaches of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The site is located in zhangye city, gansu province.The latitude and longitude of the observation point is 100.44640E, 38.97514N, and the altitude is 1460.00m.The height of the vortex correlation instrument is 5.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (Gill) and the CO2/H2O analyzer (Li7500A) is 25cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, Angle correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked in red. From April 3 to 12, due to instrument calibration, data is missing.When 10Hz data is missing due to a memory card storage problem, the data is replaced by 30min flux data output from the collector. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains meteorological element observation data from January 1, 2017 to December 31, 2017 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm, 100cm, 160cm, 200cm and 240cm underground, 2m to the south of the meteorological tower.The soil water probe is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm, 100cm, 160cm, 200cm and 240cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm, Ts_160cm, Ts_200cm, Ts_240cm) (in:C), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm, Ms_160cm, Ms_200cm, Ms_240cm) (unit: volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (unit: micromole/sq.s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the sensor problem, the data of wind speed and infrared temperature between May 26 and July 9, 2017 were missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlation-meter observation data from January 1, 2017 to December 31, 2017 at the upper reaches of the heihe hydrometeorological observation network.The station is located in qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406e, 38.8399N and 3739 m above sea level.The frame of the vortex correlator is 4.5m high, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500, replaced with Li7500RS in April 2017) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.The eddy current system Li7500 was calibrated from April 13 to 15, and the collector's data storage problem occurred from July 8 to 12, resulting in missing data.When 10Hz data is missing due to a problem with the memory card storage data, the data is replaced by the 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlativity observation data from January 1, 2017 to December 31, 2017 at the super station at the upper reaches of heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font, in which the calibration data of the vortex system Li7500A from April 13 to April 14 is missing;When 10Hz data is missing due to a problem with the storage card (2.17-2.23, 3.3-4.12), the data will be replaced by the 30-min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the flux observation data of large aperture scintillator from daman station in the middle reaches of heihe hydrometeorological observation network.Large aperture scintillators of BLS450 and BLS900 models were installed at daman station in the middle reaches of China. The north tower was the receiving end of BLS900 and the transmitting end of BLS450, and the south tower was the transmitting end and the receiving end of BLS900.The observation period is from January 1, 2017 to December 31, 2017.The station is located in dazman irrigation district, zhangye city, gansu province.The latitude and longitude of the north tower is 100.3785 E, 38.8607 N, and the latitude and longitude of the south tower is 100.3685 E, 38.8468 N, with an altitude of about 1556m.The effective height of the large aperture scintillator is 22.45m, the optical diameter length is 1854m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (Cn2 e-13 > 1.43);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, the stability universal function of Thiermann and Grassl(1992) was selected. Please refer to Liu et al(2011, 2013) for detailed introduction.Due to instrument failure, data of large aperture scintillator was missing from June 6 to July 2, 2017. Some notes on the released data :(1) the middle LAS data is mainly BLS900, the missing time is supplemented by BLS450 observation, and the missing time of both is marked with -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set includes observation data of meteorological elements in the downstream desert station of Heihe Hydrometeorological Observation Network from January 1, 2017 to December 31, 2017. The site is located in the desert beach of Ejin Banner, Inner Mongolia, and the underlying surface is red sand desert. The latitude and longitude of the observation point is 100.9872E, 42.1135N, and the altitude is 1054m.The air temperature and relative humidity sensors are installed at 5m and 10m, facing the north; the barometer is installed at 2m; the tipping bucket rain gauge is installed at 10m; the wind speed sensor is set at 5m, 10m, and the wind direction sensor is set at 10m, facing the north; the four-component radiometer is installed at 6m, facing south; two infrared thermometers are installed at 6m, facing south, the probe orientation is vertically downward; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil heat flux plates (3 pieces) are buried in the ground 6 cm in order. Observation items include: air temperature and humidity (Ta_5m, RH_5m, Ta_10m, RH_10m) (unit: centigrade, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m / s), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts / square meter), surface radiation temperature (IRT_1, IRT_2 ) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From September 17, 2017 to September 23, due to the re-enhancement of the observation tower, the data is missing (the four-component radiation missing period is from September 9 to September 23); (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2016-6-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains data from the meteorological gradient observation system of sidaqiao super station downstream of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in the four Bridges of dalaihubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1374e, 42.0012n, and 873m above sea level.Air temperature, relative humidity and wind speed sensors are installed at 5m, 7m, 10m, 15m, 20m and 28m, with a total of 6 layers, facing due north.The wind sensor is installed at 15m, facing due north;The barometer is installed in the waterproof box;Dump-type rain gauge installed at 28m;The four-component radiometer is installed at 10m, facing due south;The two infrared thermometers are installed at 10m, facing due south, and the probe is facing vertically down.The two photosynthetic effective radiometers are installed at a location of 10m, facing due south, with the probes pointing vertically up and down, respectively.Part of the soil sensor is installed at 2m to the south of the tower body, in which the soil heat flow plate (self-calibration formal) (3 pieces) is successively buried at 6cm underground;The average soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm and 200cm underground.The soil moisture sensors were embedded in the ground at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm and 200cm. The observation items are: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), up and down the photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm, Ms_200cm) (unit: volume water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm, Ts_200cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2017-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.A large aperture scintillator of BLS900 type is installed in the downstream. The north tower is the receiving end and the south tower is the transmitting end.The observation period is from January 1, 2017 to December 31, 2017.The site is located in ejin banner, Inner Mongolia, with tamarix chinensis, populus populus, bare land and cultivated land under it.The latitude and longitude of the north tower is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.131e, 41.987 N, with an elevation of about 873m.The effective height of the large aperture scintillator is 25.5m, the optical diameter length is 2350m and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (e-14 Cn2 > 7.58);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).During the iterative calculation, the stability universal function of Thiermann and Grassl(1992) was selected.Please refer to Liu et al(2011, 2013) for detailed introduction.Due to the problem of data storage unit, data of large aperture scintillator was missing from February 21 to March 5, and July 10 to August 18, 2017. A few notes on published data :(1) data missing time is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the flux observation data of large aperture scintillator at areau station upstream of heihe hydrometeorological observation network.Two large aperture scintillation devices of BLS450 and zzlas type were set up in the upstream areau station respectively. The north tower was the receiving end of zzlas and the transmitting end of BLS450, and the south tower was the transmitting end of zzlas and the receiving end of BLS450.The observation time is January 1, 2017, solstice, December 31, 2017.The station is located in the grass daban village, a soft township, qilian county, qinghai province.The latitude and longitude of the north tower is 100.4712e, 38.0568n, and the latitude and longitude of the south tower is 100.4572e, 38.0384 N, with an altitude of about 3033m.The effective height of the large aperture scintillator is 9.5m, the optical diameter length is 2390m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS450: Cn2 > 7.25 e-14, zzlas: Cn2 > 7.84 E - 14).(2) data with weak demodulation signal strength (BLS450: Mininum X Intensity <50) were eliminated;Zzlas: Demod>-20mv);(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, for BLS450, Thiermann and Grassl(1992) stability universal function was selected.For zzlas, select Andreas 1988's stability universal function.Please refer to Liu et al(2011, 2013) for detailed introduction.From April 16 to May 26, 2017, the measurement signal of large aperture scintillator was relatively small, resulting in a large number of missing data. Several notes on the released data :(1) the upstream LAS data is mainly BLS450, the missing time is supplemented by zzlas observation, and the missing time of both is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format, please refer to the references for details. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlation-meter observation data of the mixed forest station downstream of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in Inner Mongolia ejin banner four road bridge, under the surface is populus and tamarix.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874 m above sea level.The rack height of the vortex correlativity instrument is 22m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.2m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.April 7 solstice April 8 due to instrument calibration, 3.24-4.08 infrared gas analyzer error, data missing.Suspicious data caused by instrument drift, etc., are identified in red font.When 10Hz data is missing due to a problem with the memory card storage data, the data is replaced by the 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlativity observation data of huachaizi desert station in the middle reaches of heihe hydrological meteorological observation network from January 1, 2017 to December 31, 2017.The station is located in zhangye city, gansu province.The longitude and latitude of the observation point are 100.3201E, 38.7659N and 1731.00m above sea level.The rack height of the vortex correlator is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.April 3 solstice on April 4, due to the calibration of vortex correlator Li7500A, data was missing.When the 10Hz data of the vortex correlator is missing (1.1-1.22), the data will be filled by the 30-minute data output of the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset is the Fractional Vegetation Cover observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observations lasted for a vegetation growth cycle from May 2012 to September 2012 (UTC+8). Instruments and measurement method: Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. Details are described in the following: 0. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1. For row crop like corn, the plot is set to be 10×10 m2, and for the orchard, plot scale is 30×30 m2. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 2. The photographic method used depends on the species of vegetation and planting pattern: Low crops (<2 m) in rows in a situation with a small field of view (<30 ), rows of more than two cycles should be included in the field of view, and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. 3. High vegetation in rows (>2 m) Through the top-down photography of the low vegetation underneath the crown and the bottom-up photography beneath the tree crown, the FVC within the crown projection area can be obtained by weighting the FVC obtained from the two images. Next, the low vegetation between the trees is photographed, and the FVC that does not lie within the crown projection area is calculated. Finally, the average area of the tree crown is obtained using the tree crown projection method. The ratio of the crown projection area to the area outside the projection is calculated based on row spacing, and the FVC of the quadrat is obtained by weighting. 4. FVC extraction from the classification of digital images. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation.
MU Xihan, HUANG Shuai, MA Mingguo
This dataset is the FPAR observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 19 July, 2012 (UTC+8). Measurement instruments: AccuPAR (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: For corn, to measure the incoming PAR on the canopy, transmission PAR under the canopy, reflected PAR on the canopy, reflected PAR under the canopy. For orchard and white poplar forest, to measure the incoming PAR outside of the canopy, transmission PAR under the canopy. Corresponding data: Land cover, plant height, crop rows identification
MA Mingguo
The dataset includes the fractional vegetation cover data generated from the stations of crop land, wetland, Gebi desert and desert steppe in Yingke Oasis and biomass data generated from the stations of crop land (corn) and wetland. The observations lasted for a vegetation growth cycle from 19 May, 2012 to 15 September, 2012. 1. Fractional vegetation cover observation 1.1 Observation time 1.1.1 Station of the crop land: The observations lasted from 20 May, 2012 to 15 September, 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the station of crop land (corn) are 2013-5-20, 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.1.2 The other four stations: The observations lasted from 20 May, 2012 to 15 September, 2012 and in ten-day periods for each observation. The observation time for the crop land are 2013-5-20, 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.2 method 1.2.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1.2.2 Design of the samples Three and two plots with the area of 10×10 m^2 were measured for the station of the crop land and wetland, respectively. One plot with the area of 10×10 m^2 was measured for the other three stations. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 1.2.3 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the stations of crop land and wetland. For the station of the crop land, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other three stations, the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 1.2.4 Method for calculating the FVC The FVC calculation was implemented by the Beijing Normal University. The detail method can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 2. Biomass observation 2.1. Observation time 2.1.1 Station of the crop land: The observations lasted from 20 May 2012 to 15 September 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the crop land are 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.1.2 The station of wetland: The observations lasted from 20 May 2012 to 15 September 2012, and in ten-day periods for each observation. The observation time for the crop land are 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.2. Method Station of the crop land: Three plots were selected and three strains of corn for each observation were random selected for each plot to measure the fresh weight (the aboveground biomass and underground biomass) and dry weight. Per unit biomass can be obtained according to the planting structure. Station of the wetland: Two plots of reed with the area of 0.5 m × 0.5 m were random selected for each observation. The reed of the two plots was cut to measure the fresh weight (the aboveground biomass) and dry weight. 2.3. Instruments Balance (accuracy 0.01 g); drying oven 3. Data storage All observation data were stored in excel. Other data including plant spacing, row spacing, seeding time, irrigation time, the time of cutting male parent and the harvest time of the corn for the station of cropland were also stored in the excel.
GENG Liying, Jia Shuzhen, Li Yimeng, MA Mingguo
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 1 August, 2012, located in the upper reaches of the Heihe River Basin. The aircraft took off at 8:30 am (UTC+8) from Zhangye airport and landed at 12:30 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 1000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 300 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
Our project entrust the L band radiosonde sounding encrypt observations to Zhangye National Climate Observatory, and collect regular observation twice a day. The dataset contains three times one day at 8:00, 14:00, 20:00, which can support the remote sensing image atmospheric correction and atmospheric science research. Observation Site: Zhangye National Climate Observatory located in Shajing Town, west of ZhangYe. The coordinates of this site: 39°5′15.68" N, 100°16′39.11" E。 Observation Instrument: China Meteorological Administration Operational L Band radiosonde system. Observation Time: The observation date last from 1 May, 2012 to 31 September, 2012, among which: Three times observations at 7:00-8:00, 13:00-14:00 and 19:00-20:00 during 1 June, 2012 to 31 August, 2012; twice at 7:00-8:00 and 19:00-20:00 during 2012-5-1 to 5-31 and 2012-9-1 to 9-31. Accessory data: Pressure, temperature, relative humidity, wind speed and wind direction profiles data.
MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 21-22, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 21-22, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, which can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 19 to 20, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 19-20, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 18 to 19, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 18-19, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 3.5m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at A’rou Superstation in the hydrometeorological observation network of Heihe River Basin between 14 October, 2012, and 31 December, 2013. There were two types of LASs at A’rou Superstation: German BLS450 and China zzlas. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. Zzlas has been in use since 14 October, 2012, and the observation period of BLS450 was from 9 August to 10 December, 2013. The site (north: 100.467° E, 38.050° N; south: 100.450° E, 38.033° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled at 5 Hz and 1 Hz intervals for BLS450 and zzlas, respectively, and then averaged over 1 min. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000; zzlas: Demod>-20 mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively. Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the drift of the zzlas signal, data from 10 November to 23 November, 2012, and 14 March to 10 April, 2013, were excluded. Due to the LAS tower’s lean, the data from 10 April to 31 May, 2013, were not collected. (2) The dataset contained the following variables: data/time (yyyy-m-d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the flux observation data of large aperture scintillator at areau station upstream of heihe hydrometeorological observation network.Two large aperture scintillation devices of German BLS450_AR and national zzlas were set up in the upstream areau station. The north tower was the receiving end of zzlas and the transmitting end of BLS450_AR, and the south tower was the transmitting end of zzlas and the receiving end of BLS450_AR.The observation period of zzlas is January 1, 2014, solstice, December 31, 2014, and the observation time of BLS450_AR is January 19, 2014, solstice, December 12, 2014.The station is located in the grass daban village, a soft township, qilian county, qinghai province.The latitude and longitude of the north tower is 100.4712e, 38.0568n, and the latitude and longitude of the south tower is 100.4572e, 38.0384 N, with an altitude of about 3033m.The effective height of the large aperture scintillator is 9.5m, the optical diameter length is 2390m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for 30 min after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS450_AR: Cn2 > 7.25 e-14, zzlas: Cn2 > 7.84 E - 14).(2) data with weak demodulation signal Intensity were removed (BLS450_AR: Average X Intensity<1000, zzlas: Demod>-20mv);(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, for BLS450_AR, the stability universal function of Thiermann and Grassl, 1992 was selected.For zzlas, select Andreas 1988's stability universal function.Please refer to Liu et al.(2011, 2013) for detailed introduction. Several notes on the released data :(1) the upstream LAS data is mainly BLS450_AR, the missing time is supplemented by zzlas observation, and the missing time of both is marked by -6999.(2) missing period: on August 10, 2014, solstice, 16th, October 3, 2014, solstice, October 13, 2014, and October 17, 2014, solstice, 20th, data was missing due to instrument failure.(3) data table head: Date/Time: Date/Time (format: yyyy-m-d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format, please refer to the references for details. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Liu et al.(2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the flux observation data of large aperture scintillator at areau station upstream of heihe hydrometeorological observation network.Two large aperture scintillation devices of BLS450 and zzlas type were set up in the upstream areau station respectively. The north tower was the receiving end of zzlas and the transmitting end of BLS450, and the south tower was the transmitting end of zzlas and the receiving end of BLS450.The observation period of zzlas is January 1, solstice, December 31, 2015;The initial observation time of BLS450 was on January 13, 2015, solstice, March 16, 2015, and the observation time was on April 15, 2015, solstice, December 31, 2015.The station is located in the grass daban village, a soft township, qilian county, qinghai province.The latitude and longitude of the north tower is 100.4712e, 38.0568n, and the latitude and longitude of the south tower is 100.4572e, 38.0384 N, with an altitude of about 3033m.The effective height of the large aperture scintillator is 9.5m, the optical diameter length is 2390m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS450: Cn2 > 7.25 e-14, zzlas: Cn2 > 7.84 E - 14).(2) data with weak demodulation signal strength (BLS450: Average X Intensity<1000 (2015.1.13-2015.3.16) and Mininum X Intensity< 50 (2015.4.15-2015.12.31) were excluded.Zzlas: Demod>-20mv);(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, for BLS450, Thiermann and Grassl(1992) stability universal function was selected.For zzlas, select Andreas 1988's stability universal function.Please refer to Liu et al(2011, 2013) for detailed introduction. Several notes on the released data :(1) the upstream LAS data is mainly BLS450, the missing time is supplemented by zzlas observation, and the missing time of both is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format, please refer to the references for details. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains cosmic ray instrument (CRS) observations from January 1, 2016 to December 31, 2016.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selection of dry and wet conditions are the obvious difference of June 26, 2012-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, XU Ziwei, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo
This data set contains the data of meteorological element gradient observation system of dashman superstation in the middle reaches of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The sensor in the soil part was adjusted and the data could not be used;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-6-10-10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set includes the river level observation data of No. 4 point in the dense runoff observation of the middle reaches of Heihe River from May 20, 2015 to March 11, 2016. The instrument maintenance was completed again on May 20, 2015. The observation point is located in Heihe bridge, Shangbao village, Jing'an Township, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39.065 °, e100.433056 °, 1431m above sea level, and 58m wide river channel. In 2012, hobo pressure type water level gauge was used for water level observation with acquisition frequency of 30 minutes; since 2013, sr50 ultrasonic distance meter was used with acquisition frequency of 30 minutes. On June 25, 2014, the instrument was damaged and re purchased. The record was restarted on May 20, 2015. The data includes the following parts: Water level observation, observation frequency 30 minutes, unit (cm); For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to He et al.(2016).
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
halong Beach area on the west side of Qilian County, Qinghai Province. The underlying surface is swamp meadow. The latitude and longitude of the observation point is 98.9406E, 38.8399N, and the altitude is 3739m. The air temperature and relative humidity sensors are erected 5 meters above the ground, facing North; the barometer is installed in the pick-proof box on the ground; the tipping bucket rain gauge is erected 10 meters above the ground; the wind speed and direction sensor is set 10 meters above the ground, facing North; the four-component radiometer is installed 6 meters above the ground, facing South; two infrared thermometers are installed 6 meters above the ground, facing South, and the probe orientation is vertical downward; the soil temperature probes are buried respectively at 0cm on the ground surface, 4cm、10cm、20cm、40cm、80cm、120cm and 160cm under the ground, they are located 2 meters from the meteorological tower in the South; the soil moisture sensors are buried 4cm、10cm、20cm、40cm、80cm、120cm and 160cm under the ground, 2 meters from the meteorological tower in the South; the soil heat flow boards (3 pieces) are buried 6cm under the ground, 2 meters from the meteorological tower in the South. Observed items include: air temperature and humidity (Ta_5m, RH_5m) (unit: Celsius, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: meter / sec), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watt / square meter), surface radiation temperature (IRT_1, IRT_2) (unit: Celsius) , soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm , Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volumetric water content, percentage). Processing and quality control of observation data: (1) Ensure 144 data per day (every 10 minutes), if there is missing data, it is marked as -6999. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2016-9-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Liu et al. (2018). For observation data processing, please refer to Liu et al. (2011).
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set includes observation data of meteorological elements in the downstream desert station of Heihe Hydrometeorological Observation Network from January 1, 2016 to December 31, 2016. The site is located in the desert beach of Ejina Banner, Inner Mongolia, and the underlying surface is desert. The latitude and longitude of the observation point is 100.9872E, 42.1135N, and the altitude is 1054m. The air temperature and relative humidity sensors are installed at 5m and 10m, facing the north; the barometer is installed at 2m; the tipping bucket rain gauge is installed at 10m; the wind speed sensor is set at 5m, 10m, and the wind direction sensor is set at 10m, facing the north; the four-component radiometer is installed at 6m, facing south; two infrared thermometers are installed at 6m, facing south, the probe orientation is vertically downward; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil heat flux plates (3 pieces) are buried in the ground 6 cm in order. Observation items include: air temperature and humidity (Ta_5m, RH_5m, Ta_10m, RH_10m) (unit: centigrade, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m / s), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts / square meter), surface radiation temperature (IRT_1, IRT_2 ) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2016-6-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set includes the observation data of river water level and velocity at No.7 point in the dense observation of runoff in the middle reaches of Heihe River from January 1, 2015 to March 11, 2016. The sensor was abnormal at the end of 2014, and the commissioning was normal on March 25 after maintenance. The observation point is located in Heihe bridge, Pingchuan Township, Linze County, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39.331667 °, e100.099722 °, altitude 1375 meters, and channel width 130 meters. In 2015, sr50 ultrasonic distance meter was used for water level observation, with acquisition frequency of 30 minutes. Data description includes: Water level observation, observation frequency 30 minutes, unit (cm); The missing data are uniformly represented by the string -6999. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to He et al.(2016).
LIU Shaomin, LI Xin, XU Ziwei
The data set contains meteorological observation data of zhangye wetland station in the middle reaches of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The site is located in zhangye national wetland park in gansu province.The latitude and longitude of the observation point is 100.4464E, 38.9751N, and altitude is 1460m.Air temperature and relative humidity sensors are set up at 5m and 10m, facing due north.The barometer is installed at 2m;The inverted bucket rain gauge is installed at 10m;The wind speed sensor is set up at 5m and 10m, and the wind direction sensor is set up at 10m, facing due north.The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm and 40cm underground, in the south due to 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm;Four photosynthetic radiometers are installed above and inside the canopy respectively. The upper part of the canopy is installed at 6m (one probe vertically up and one probe vertically down), and the upper part of the canopy is installed at 0.25m (one probe vertically up and one probe vertically down), facing due south. Observation items are: air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Degrees Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm) (unit: c), the canopy on the up and down photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2) and up and down under canopy photosynthetic active radiation (PAR_D_up, PAR_D_down) (unit: second micromoles/m2). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2016-6-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological observation data of meteorological elements from January 1, 2016 to December 31, 2016 on the haihewen meteorological observation network in yaokou station.The station is located in da dong shu pass, qilian county, qinghai province.The latitude and longitude of the observation point are 100.2421E, 38.0142N, and 4148m above sea level.The published data included two observation points, both of which were in the observation station of mountain pass, about 10m apart. Specifically, the air temperature and relative humidity sensors were set up at 5m, facing due north (the two observation groups output 10min and 30min respectively).The barometer is installed in an anti-skid box on the ground (two groups of observation, 10min and 30min output respectively);The inverted bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north (two groups, respectively 10min and 30min output);The four-component radiometer consists of two observation points, one of which is installed at the 6m position of the weather tower, facing due south (10min output), and the other is installed on a support 1.5m above the ground (30min output).The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe was buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (the two groups were observed and output for 10min and 30min respectively).The soil moisture probes were buried in the ground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm (the two groups were observed and output for 10min and 30min respectively).The soil heat flux plates were buried 6cm underground (observed in two groups for 10min (3 heat flux plates) and 30min (2 heat flux plates) respectively). Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage). Processing and quality control of observation data :(1) ensure 144 or 48 data per day (every 10min or 30min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 10:30 on 10th September 2016;(6) the naming rule is: AWS+ site name. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlativity observation data of huazhaizi desert station in the middle reaches of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in zhangye city, gansu province.The longitude and latitude of the observation point are 100.3201E, 38.7659N and 1731.00m above sea level.The rack height of the vortex correlator is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.On April 24, solstice and April 25, due to the calibration of vortex correlator Li7500A, data was missing.When the 10Hz data of the vortex correlator is missing, the data is filled by the data collected by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the data of meteorological gradient observation system of sidaqiao superstation downstream of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in the four Bridges of dalaihubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1374e, 42.0012n, and 873m above sea level.Air temperature, relative humidity and wind speed sensors are installed at 5m, 7m, 10m, 15m, 20m and 28m, with a total of 6 layers, facing due north.The wind sensor is installed at 15m, facing due north;The barometer is installed in the waterproof box;Dump-type rain gauge installed at 28m;The four-component radiometer is installed at 10m, facing due south;The two infrared thermometers are installed at 10m, facing due south, and the probe is facing vertically down.The two photosynthetic effective radiometers are installed at a location of 10m, facing due south, with the probes pointing vertically up and down, respectively.Part of the soil sensor is installed at 2m to the south of the tower body, in which the soil heat flow plate (self-calibration formal) (3 pieces) is successively buried at 6cm underground;The average soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe was buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (200cm of soil temperature observation was added on April 22).Soil moisture sensors were embedded in the ground at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm respectively (add 200cm soil moisture observation on 22 April). The observation items are: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), up and down the photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm, Ms_200cm) (unit: volume water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm, Ts_200cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;The soil temperature of 4cm was between May 21, 2016 and May 17, 2016.(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 10:30 on 10th September 2016;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2016 to December 31, 2016 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground (observation at depths of 160cm,200cm and 240cm were increased on April 22), 2m to the south of the meteorological tower.The soil water probe was buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground (observation at depths of 160cm,200cm and 240cm were increased on April 22), 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm, Ts_160cm, Ts_200cm, Ts_240cm) (in:C), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm, Ms_160cm, Ms_200cm, Ms_240cm) (unit: volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (unit: micromole/sq.s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the sensor problem, the wind direction was partly missing between April and April 21, 2016;The soil heat flux G1 is between 2.21-3.15, G2 is between 1.24-3.15, 4.4-4.22 and 12.1-12.21.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the observation data of vorticity correlativity at da-sharon station, upstream of heihe hydrometeorological observation network, from January 27, 2016 to December 31, 2016.The station is located in qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406e, 38.8399N and 3739 m above sea level.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.Calibration of Li7500 in May 2-3, data missing;When 10Hz data is missing due to a problem with the storage card (3.20-5.01), the data will be replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from site No.14 eddy covariance system (EC) in the flux observation matrix from 30 May to 21 September, 2012. The site (100.35310° E, 38.85867° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1570.23 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
This data set contains the observation data of vortex-correlograph in the middle reaches of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Due to the power failure from March 3 to 23, the Li7500A of the vortex system was calibrated from April 17 to 25, and the collector problems from October 10 to 24 and December 19 to 31 led to data loss. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data of huazhaizi desert station in the middle reaches of heihe hydrological meteorological observation network from January 1, 2016 to December 31, 2016.The station is located in huazhaizi, zhangye city, gansu province.The latitude and longitude of huazhaizi station is 100.3201E, 38.7659N and 1731m above sea level.The observation items include: air temperature and relative humidity sensors at 5m and 10m, facing due north;Install the barometer inside the waterproof box;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 5m and 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried 6cm underground.Specific observation elements are as follows: Air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage), and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data elements of observation data every day (every 10min), and mark by -6999 in case of data missing;Due to the problem of the wind speed and direction sensor, the observed wind speed of 10m was missing between December and January 29, 2016;The data of soil heat flux G2 was missing from July 5 to August 17 due to the probe problem.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-6-10-10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the vortex correlator observation data of sidaqiao superstation in the downstream of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in the fourth bridge of ejin banner in Inner Mongolia, tamarisk is the underlying surface.The latitude and longitude of the observation point is 101.1374e, 42.0012n, and the altitude is 873 m.The height of the vortex correlativity instrument is 8m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.From April 14 to 23, data was missing due to errors and calibration of the vortex system Li7500.During the period from May 1 to August 23, the intermittent error of Li7500 resulted in the loss of latent heat flux and carbon dioxide flux.Suspicious data caused by instrument drift shall be identified in red. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the observation data of vorticity correlativity from January 1, 2016 to December 31, 2016 of the super station at the upper reaches of heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font, in which Li7500A calibration data of vorticity system from April 30 to May 1 is missing;When 10Hz data is missing due to a problem with the memory card storage data (11.9-11.24), the data will be replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.A large aperture scintillator of BLS900 type is installed in the downstream. The north tower is the receiving end and the south tower is the transmitting end.The observation time is from January 1, 2016 to December 31, 2016.The site is located in ejin banner, Inner Mongolia, with tamarix chinensis, populus populus, bare land and cultivated land under it.The latitude and longitude of the north tower is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.131e, 41.987 N, with an elevation of about 873m.The effective height of the large aperture scintillator is 25.5m, the optical diameter length is 2350m and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (e-14 Cn2 > 7.58);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).During the iterative calculation, the stability universal function of Thiermann and Grassl(1992) was selected.Please refer to Liu et al(2011, 2013) for detailed introduction.From June 8 to 16, 2016, the measurement signal of large aperture scintillator was relatively small, resulting in a large number of missing data. A few notes on published data :(1) data missing time is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2016 to December 31, 2016 from jingyangling station, upstream of heihe hydrometeorological observation network.The station is located in jingyangling pass, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160e, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Some invalid values of 4cm soil moisture appeared in November and December.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains meteorological element observation data from January 1, 2016 to September 29, 2016 from the E’bao station upstream of heihe hydrometeorological observation network.The station is located in caochang, qilian county, qinghai province.The latitude and longitude of the observation point is 100.9151e, 37.9492n and 3294m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The problem of soil heat flux G1 occurred after August 15. The soil moisture at a depth of 160cm was between 5.12 and 6.16, and data was missing due to sensor problems.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn