The dataset of ground-based microwave scatterometer (C-5 and LS-C-5; S-3; LS-S-3) and ground truth observations was obtained in the Linze grassland foci experimental area. Besides, TDR-200 was also used. Observation items included: (1) soil moisture of the grassland on Jul. 9, 2008. HH, HV, VV and VH polarization combinations were applied. (2) soil moisture of the maize field on Jul. 10, 2008. VV, HH, VH and HV polarization combinations were applied. (3) humidity of the grassland at around 11:30am on Jul. 11, 2008. VH, HH, VV and HV polarization combinations were applied.
CHEN Yan, JIA Mingquan, JIA Mingquan, LIU Zengcan, LIU Zengcan, XU Chunliang, QIN Wei, ZHAO Zizheng
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No.1 (freeze/thaw status), No. 2 (snow parameters) and No. 3 (freeze/thaw status) quadrates of the A'rou foci experimental areas on Mar. 12, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Center and corner points of each subsite were chosen for all observations except for the cutting ring measurements which only observed the center points. In No. 1 quadrate, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, soil volumetric moisture by ML2X, the soil volumetric moisture profile (10cm, 20cm, 30cm, 40cm, 60cm and 100cm) by PR2, the mean soil temperature from 0-5cm by the probe thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In No. 2 quadrate, simultaneous with ASAR, snow parameters were measured, the snow surface temperature by the thermal infrared probe, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case, the snow surface temperature and the snow-soil interface temperature by the thermal infrared probe, snow spectrum by ASD, and snow albedo by the total radiometer. In No. 3 quadrate soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were measured by WET, the mean soil temperature from 0-5cm by the probe thermometer (5# and 7#), the surface radiative temperature by the hand-held infrared thermometer (5#), and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Besides, GPR (Ground Penetration Radar) observations were also carried out in No. 1 quadrate of A'rou. Those provide reliable ground data for retrieval and verification of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yanfen, CAO Yongpan, GE Chunmei, GU Juan, HAN Xujun, LI Zhe, LIANG Ji, MA Mingguo, SHU Lele, WANG Jianhua, WANG Xufeng, WU Yueru, XU Zhen, QU Wei, CHANG Cun, DOU Yan, MA Zhongguo, YU Meiyan, ZHAO Jin, JIANG Tenglong, XIAO Pengfeng , LIU Yan, ZHANG Pu, PATRICK Klenk, YUAN Xiaolong
The dataset of ground truth measurement synchronizing with Envisat ASAR and MODIS was obtained in the arid region hydrological experimental area on May 24, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:34 BJT. Observation items included: (1) The radiative temperature of Reaumuria soongorica and the bare soil in Huazhaizi desert No. 2 plot (HZZHMYD2)was collected using ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), along the diagonal (NW-SE). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived as Excel files). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), were measured at nadir with time intervals of one second. Raw data, blackbody calibrated data and processed data were all archived as Excel files. (3) The radiative temperature in Huazhaizi desert No. 2 plot by the handheld infrared thermometer (which belongs to BNU) along the diagonal (NW-SE). Raw data (.doc), blackbody calibrated data and processed data (in Excel format) were all archived. (4) Soil moisture (0-40cm) by the cutting ring and the soil temperature by the thermocouple thermometer in Yingke oasis and Huazhaizi foci experimental area. Besides, (a) roughness of No. 1 and 2 Huazhizi desert plots was also measured by self-made instruments . Sample points were selected every 30m along the diagonal of each plot. (b) soil profile moisture (0-100cm) and the temperature in the maize field of Yingke oasis. (c) soil profile moisture (0-100cm) and the temperature in one orchard of Yingke Oasis. Data were all archived as Excel files. (5) the photosynthetic rate of alfalfa and barley at Linze grass station by LI-6400. Raw data were archived in the user-defined format (by notepat.exe) and processed data were as Excel files. (6) ground object reflectance spectra of new-born rape and the bare land in Biandukou foci experimental area by ASD FieldSpec (350~2500 nm) from Institute of Remote Sensing Applications (CAS). Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (7) LAI by the measuring tape and the ruler in the alfalfa field of Linze grass station. The maximum length and width of alfalfa leaves and barley were measured. Data were archived as Excel files. (8) surface roughness in Huazhaizi desert No. 2 plot with the self-made roughness board (Cold and Arid Regions Environmental and Engineering Research Institute, CAS), the digital camera and the compass. Sample points were selected at equal intervals along the diagonals and marked in the photos.
CHEN Ling, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jindi, YAN Guangkuo, GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, GUANG Jie, LI Li, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, TAO Xin, YAN Binyan, YAO Yanjuan, CHENG Zhanhui, YANG Tianfu
The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in No. 2 and 3 quadrates of the A'rou foci experimental area on Mar. 14, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:21 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Only the corner points of each subsite were chosen for observations. Those provide reliable ground data for retrieval and verification of soil moisture from active remote sensing approaches. In No. 2 quadrate, simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In No. 3 quadrate, simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, soil volumetric moisture by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area".
CAO Yongpan, GU Juan, LI Xin, LI Zhe, MA Mingguo, SHU Lele, WANG Jianhua, WANG Xufeng, WU Yueru, ZHU Shijie, CHANG Cun
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jul. 14, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:31 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Those provide reliable ground data for retrieval and validation of soil moisture from active remote sensing approaches. Observation items included: (1) soil moisture by POGO soil sensor in No. 1, 2 and 3 quadrates; 25 corner points of each subsite were chosen for the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity; (2) the soil temperature by the handheld infrared thermometer 3# and 5# from BNU in No. 1 quadrate, 1# and 4# in No. 2 quadrate, and 2# and 6# in No. 3 quadrate; 25 corner points of each subsite were measured twice by two groups, and time, the maximum, the minimum and the mean value, and the land cover types were all recorded. (3) spectrum of the grassland, the bare land and the stellera by the thermal infrared spectrometer, 102F. The dataset includes ASAR images, preprocessed data of the thermal infrared spectrometer, 102F, the surface temperature and soil moisture synchronizing with Envisat ASAR.
GAO Hongchun, LI Hongxing, LIU Chao, RAN Youhua, REN Huazhong, YU Yingjie
The dataset of soil temperature profile (5cm, 10cm, 15cm and 20cm) observations was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas from May 27 to Jul. 13, 2008. Diurnal observations were carried out in the bare land near No. 5 building of the resort at 6:00 and 12:00 from May 27 to Jun. 14, and in Yingke oasis No. 4 plot at 10:00 from Jun. 15 to Jul. 13. Besides, intensive observations were carried out at an interval of one hour from 6:00 on Jun. 2 to 6:00 on 3, 2008.
GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, SU Gaoli, LIANG Wenguang, YU Fan, Wang Jing, LI Xiaoyu
The dataset of ground-based microwave scatterometer and ground truth observations for soil freeze/thaw cycle was obtained in No. 3 quadrate of the A'rou foci experimental area from 22:33 on Mar. 16 to 15:00 on 17, 2008. Observation items included the mean soil temperature from 0-5cm by the probe thermometer, the soil temperature at 5cm and 10cm by the glass geothermometer, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches. Two files were included, the microwave scatterometer and ground truth observations; both were archived in Excel format.
LIU Zengcan, LIU Zengcan, QIN Wei, CAO Yongpan, HAN Xujun, MA Mingguo
The dataset of ground truth measurement synchronizing with ALOS PALSAR was obtained in the Linze grassland foci experimental area on Jun. 27, 2008. The data were in FBD mode and HH/HV polarization combinations, and the overpass time was approximately at 23:41 BJT. Observations were carried out in the reed plot A, the saline plot B, the alfalfa plot D and the barley plot E, which were divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring and the mean soil temperature from 0-5cm by the probe thermometer were measured in A and B; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring in D and E. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
LI Xiaoyu, CHAO Zhenhua, GE Chunmei, HU Xiaoli, WANG Shuguo, WANG Xufeng, WU Yueru, WANG Jing, CAO Yongpan
The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in 5 quadrates (30 m×30 m) the Biandukou foci experimental area on May 31, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were the surface radiative temperature and soil moisture. The quadrates were covered with wheat, rape and bare land. The radiative temperature of 25 corner points (located in No. 2, 3, 4 and 5 quadrates) were acquired. (1) the surface radiative temperature by the handheld infrared thermometer; the quadrate of 30 m×30 m was divided into 21 corner points and each point was measured three times; two for the bare land and one for the vegetation if the two coexist. The data included raw data, recorded data and the blackbody calibrated data. (2) soil moisture (0-5cm) by TDR; 16 center points of the subplot (7.5m×7.5m) were measured three times and the data were archived as Excel files. (3) the time-continuous surface radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 0.95), observing straight downwards at intervals of 1s. Raw data, blackbody calibrated data and processed data were archived as Excel files. Four data files were included, the fixed point temperature in No. 2, 3, 4 and 5 quadrates, the radiative temperature by the handheld infrared thermometer, calibration data and the time-continuous data.
CHAI Yuan, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, LIU Xiaocheng, LIANG Wenguang, LI Xiaoyu, HUANG Bo, LUO Zhen
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in the Linze grassland foci experimental area on Jul. 11, 2008. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:26 BJT. Observations were carried out in the reed plot A, the saline plots B and C, the alfalfa plot D and the barley plot E, which were divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by using the cutting ring, the mean soil temperature from 0-5cm by the probe thermometer, and the canopy temperature and the land surface temperature by the hand-held infrared thermometer were measured in A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the canopy temperature and the land surface temperature by the hand-held infrared thermometer in D and E. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HU Xiaoli, HUANG Chunlin, LIU Chao, WU Yueru, SHEN Xinyi
The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C, the alfalfa plot D and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying measured by the cutting ring and the mean soil temperature from 0-5cm measured by the probe thermometer in plot A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, and the mean soil temperature from 0-5cm measured by the probe thermometer in plot D and E. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HAN Xujun, HU Xiaoli, HUANG Chunlin, LIANG Ji, WANG Shuguo, WU Yueru, FENG Lei, YU Fan, WANG Jing
The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in No. 1 and No. 3 quadrates of the A'rou foci experimental area on May 31, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were the surface radiative temperature and surface soil moisture. The surface radiative temperature (emissivity: 1.0) was measured by the automatic thermometer at intervals of 0.05s, and the data were archived as .txt files (.dat format). The first seven rows were the header file, including acquisition date, time, and intervals; besides, Time (starting time), TObj (target temperature), Tint (the interior temperature of the probe), TBox (the temperature of the box) and Tact (the actual temperature calculated from the given emissivity) were also listed. Soil moisture (0-12cm and 0-20cm) was measured by TDR. The data including the soil temperature, soil complex permittivity and soil conductivity, were archived in Excel format.
HUANG Chunlin, GE Chunmei, HAN Xujun, LI Li, XIN Xiaozhou, ZHOU Mengwei
The dataset of ground truth measurement synchronizing with ALOS PALSAR was obtained in the Linze grassland foci experimental area on Jun. 10, 2008. The data were in FBS mode and HH/HV polarization combinations, and the overpass time was approximately at 23:39 BJT. Observations were carried out in plots A, B, C, D and E, which were divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring and the mean soil temperature from 0-5cm by the probe thermometer were measured in A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, and the mean soil temperature from 0-5cm by the probe thermometer in D and E. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
BAI Yanfen, CAO Yongpan, GE Chunmei, HU Xiaoli, WANG Shuguo, Wang Weizhen, WU Yueru, ZHU Shijie, FENG Lei
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands, between 8:06~11:17BJT) and thermal imager mission (between 12:48~16:35BJT) was obtained in L2, L3, L4, L5 and L6 of the A'rou foci experimental area on Apr. 1, 2008. The samples were collected every 100m along the strip from south to north in the the morning and from north to south in the afternoon. In L2, L4 and L6, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L3, soil volumetric moisture was acquired by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L5, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were acquired by WET, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Besides, the handheld thermal imager observations were carried out in L4. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches. Seven files were included, two ground-based microwave radiometers (L&K-band and L-band) observations, L2 data, L3 data, L4 data, L5 data and L6 data.
GE Chunmei, GU Juan, HAN Xujun, HAO Xiaohua, HU Zeyong, HUANG Chunlin, LI Zhe, LIANG Ji, MA Mingguo, SHU Lele, Wang Weizhen, WU Yueru, ZHU Shijie, LI Hua, CHANG Cun, DOU Yan, MA Zhongguo
The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Linze station foci experimental area on Jun. 6, 2008. Observation items included: (1) soil moisture (0-5cm) measured by the cutting ring (50cm^3) along LY06, LY07 and LY08 strips (repeated nine times). The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured by three handheld infrared thermometers (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in LY06 and LY07 strips. There are 49 sample points in total and each was repeated three times synchronizing with the airplane. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
GAO Song, HAO Xiaohua, PAN Xiaoduo, Qian Jinbo, SONG Yi, WANG Yang
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained along the sample lines 1, 2, 3, 4, 5 and 6 of the Linze grassland foci experimental area on May 25, 2008. Complementary measurements were carried out along Line 7 on Jun. 2. 25 points at intervals of 100m were selected at each line. Simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured three times by the hand-held infrared thermometer in L1, L2, L3 and L4; soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were measured by WET, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured three times by the hand-held infrared thermometer in L5 and L6; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density measured by the cutting ring in L7. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, GE Chunmei, HAN Xujun, HUANG Chunlin, RAN Youhua, SONG Yi
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Linze grassland foci experimental area on Jul. 4, 2008. Simultaneous ground observations on the land surface radiative temperature, the soil temperature and soil moisture were carried out along sampling stripes of newL1-newL12 (each has five points). At each point, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring, the mean soil temperature from 0-5cm by the probe thermometer, the canopy temperature and the land surface temperature by the hand-held infrared thermometer were measured. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
GE Chunmei, HU Xiaoli, HUANG Chunlin, LI Hongxing, WANG Xufeng, ZHU Shijie, Wang Jing
The dataset of ground truth measurements synchronizing with MODIS was obtained in C1, W2 and B2 of the Biandukou foci experimental area from 12:00-15:00 on Mar. 14, 2008. Observation items included: (1) the frost depth from 11:37-12:11 by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The cover type photos were archived. (2) the gravimetric soil moisture (soil samples from 0-1cm, 1-3cm, 3-5cm, 5-10cm and 10-20cm) by the microwave drying method. (3) the surface radiative temperature by the handheld infrared thermometer and the physical temperature by the thermocouple thermometer. (4) the soil roughness, which can be acquired from related dataset of other period.
CHANG Sheng, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area from 8:25 to 11:15 BJT on Mar. 21, 2008. Observation items included: (1) microwave radiometer observations; (2) the surface radiative temperature by the handheld infrared thermometer and the physical temperature by the thermocouple thermometer; (3) the frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal; (4) Snow depth by the ruler; (5) the gravimetric soil moisture (soil samples from 0-1cm, 1-3cm and 3-5cm) by the microwave drying method. The volumetric moisture can be calculated by the gravimetric moisture and bulk density. The data can be opened by Microsoft Office. The sample point coordinates were also included.
CHANG Sheng, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, CHE Tao, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the A'rou foci experimental area on Oct. 18, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by the WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn