The dataset combined with crop phrenology data and field management data which were investigated near the 13 eddy covariance (EC) stations. 1.1 Objective of investigation Objectives of investigation is to supply assistant information for experiment on EC, meteorology, and biophysics parameter. 1.2 Investigation spots and items Investigation spots include Jiu She of Shiqiao village (EC3), Xiaoman southern road (EC16), Wu She of Five stars village (EC13), Wu She of Xiaoman village (EC14), Er She of Shiqiao village (EC5), Liu She of Zhonghua village (EC11), Liu She of Shiqiao village (EC2), Wu She of JinCheng village (EC7), EC6, Liu She of Jincheng village (EC8), Yi She of Kangning village (EC9), Er She of Kangning village (EC10), and Si She of Jingcheng village (EC12). Investigation items comprise crop type, crop name, seed time, seed type, plant span, row span, field area, germination time, three leaves period, seven leaves period, farming way, farming time, irrigation time, irrigation water volume, fertilization time, fertilization type, and fertilization rate. The time used in this dataset is in UTC+8 Time. 1.3 Data collection Data was collected by using ask-reply approach according to investigation tables.
GE Yingchun, Ma Chunfeng, LI Xin
The dataset includes channel flow measured at the second irrigation stage in spring (22 May, 2012), the third irrigation stage in spring (18 June, 2012) and the first irrigation stage in autumn (16 July, 2012). The time used in this dataset is in UTC+8 Time. 1.1 Objective of measurement Objective of measuring channel flow are to provide the conference data for irrigation water optimal allocation model according to obtain reality water volume measured at Dou channel and Mao channel. Data set also is used to reference data for other observations such as eddy, biophysical parameters. 1.2 Observation measures and principle Measures: flow meter named Flowatch, which is made in Switzerland, observation precision: 0.1m/s; and rule, observation of which is 1cm. Principle: Flowatch, which is mechanical-based, is used to compute the velocity of the fluid according to vanes speed. The flow of channels is computed by using observed flow velocity and channel sectional area calculated on the basis of channel engineer sectional parameters and water level. 1.3 Observation location and items Observation spots include Yingyi branch San dou (Liu She, Shang’er She, and Xia’er She of Shiqiao village), Si Dou (Qi She, Ba She, and Jiu She of Shiqiao village), and Wu Dou (Yi She of Shiqiao village) at Yingke irrigation district, and seven Mao channels branched from five star branch channel Si Dou San Nong. Observation time is described as followed: Second stage irrigation in summer: 2012-5-22: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-5-23: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-5-24 to 2012-5-25: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-5-26 to 2012-5-28: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-5-28 to 2012-5-29: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-5-29 to 2012-5-30: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-5-30 to 2012-6-2: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-6-6: Yi Mao, Er Mao, San Mao, Si Mao, and Wu Mao branched from Five star branch channel Si Dou San Nong: Five star village 2012-6-7: Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Third stage irrigation in summer: 2012-6-18 to 2012-6-19: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-6-19 to 2012-6-20: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-6-20 to 2012-6-21: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-6-22 to 2012-6-24: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-6-24 to 2012-6-26: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-6-26 to 2012-6-27: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-6-27 to 2012-6-30: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-7-1 to 2012-7-2: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village First stage irrigation in Autumn: 2012-7-16 to 2012-7-18: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-7-18 to 2012-7-19: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-7-19 to 2012-7-21: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-7-21 to 2012-7-24: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-7-24 to 2012-7-25: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-7-25 to 2012-7-27: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-7-27 to 2012-7-31: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-7-27 to 2012-7-28: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Second stage irrigation in Autumn: 2012-8-8 to 2012-8-9: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-8-9 to 2012-8-10: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-8-10 to 2012-8-12: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-8-13 to 2012-8-15: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-8-15 to 2012-8-17: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-8-17 to 2012-8-19: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-8-19 to 2012-8-22: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-8-24 to 2012-8-25: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Observed items: average flow velocity of channel (m/s), water level of channel (m), water temperature (℃), engineer sectional parameters of channel (investigation). Average flow velocity and water level of channel are measured one time per hour when channel flow is stable. However, the two items are measured two times or more times when channel flow is unstable. 1.4 Data process Observed data is saved in excel sheet, types of which include channel flow velocity, channel sectional area, water level, and water temperature. Channel flow and irrigation water volume are calculated by using observed data according to data per-process approach.
GE Yingchun, MA Chunfeng, Xu Fengying, LI Xin
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer and synchronous measurement from November 24-25, 2013 in the desert of Minle County, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 24-25, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage, 18.7ghz h polarization damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.3m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
The purpose of differential GPS positioning survey is to unify multiple survey areas into the same coordinate system and realize accurate absolute positioning through joint survey with national high-level control point coordinates. Under the national geodetic coordinate system of 2000, the accurate positioning of flux observation matrix, hulugou small watershed, tianmuchi small watershed and dayokou watershed and target is completed. In order to realize the geometric correction and absolute positioning of optical image, SAR image and airborne lidar data, the layout of ground control points and high-precision measurement are completed. In the middle reaches of the area, one national high-level control point is jointly surveyed in the five directions of East, South, West, North and middle. Measuring instrument: There are 3 sets of triple R8 GNSS system. Measurement principle: For the control network encryption point, it is connected with the high-level known points in four quadrants around the survey area and distributed evenly in the survey area. For the ground control point (GCP), the obvious characteristic points (such as house corner, road intersection, inflection point, etc.) of the ground layout target and the independent ground objects are adopted and evenly distributed in the survey area. For the ground points with high accuracy requirements, the principle of average value of multiple (at least three) measurements is adopted. Measurement method: In the test area, the control network is encrypted, and GPS static measurement and national high-level control network are used for joint measurement and calculation. During measurement, multiple GPS receivers conduct static synchronous observation at different stations, and the observation time is strictly in accordance with the control network measurement specifications. The ground points in the test area are accurately located. GPS-RTK positioning technology is used and the national high-level control points are used to calibrate to the local coordinate system. When the mobile station obtains the fixed solution during the coordinate acquisition, the measurement is carried out again and the single measurement lasts for 5S. Measuring position: (1) Flux observation matrix 17 stations, Las tower, waternet, soilnet and bnunet nodes in the core area of flux observation matrix; ground control points in CASI flight area; ground corner reflector positions in radar coverage area; ground target positions in lidar flight area. (2) Hulugou small watershed Ground target location of lidar flight area. (3) Tianmuchi small watershed Ground target location of lidar flight area. (4) Dayokou Basin Satellite image geometric correction ground control point. Data format: GPS static survey, the original data format is ". Dat" and ". T01" (or ". T02") files (or converted renix data) and "field record". GPS-RTK survey, the original project is ". Job" file (or converted ". DC" file). The test results are submitted in the format of exported ". CSV" data, which can be viewed and edited by Excel software. Measurement time: June 19, 2012 to July 30, 2012
LIU Xiangfeng, MA Mingguo
During the period of middle stream experiment in 2012, closed chamber and gas chromatography method was used to measure soil respiration of different land surface, including farmland, orchard, wetland, sparse grassland (Huazhaizi), Gobi, desert. Instrument: Assimilation Chamber Measuring method: Assimilation chamber consists of two parts: the base and the box. Base made of PVC material, the bottom buried in the soil. The box is made of stainless steel cubes, with one open side. When measuring the box cover on the base, air in the box was sampled using injector. The extracted air was injected into the gas sampling bag, and shipped back to the laboratory analysis of the concentration of CO2 by gas chromatography in Institute of Botany, The Chinese Academy of Sciences. Using the difference of concentration of CO2 at two times to calculate soil respiration. Each measurement points are located three repeat. After five minutes sealed box cover start mining the 1st sample, and then taken once every sample interval of 10 minutes, four times in total mining. Date content: Data content includes header information and once every 10 days three times repeated observations and the average of the three times. Measuring location: Gobi (Bajitan Gobi station), Wetland (Zhangye wetland Station), Sparse grassland (Huazhaizi desert steppe Station), Desert (Shenshawo sandy desert Station), Orchard (site No.17 eddy covariance system), Maize Farmland (Daman Superstation) Measuring time: 16-6-2012, 28-6-2012, 9-7-2012, 18-7-2012, 30-7-2012, 11-8-2012, 21-8-2012, 2-9-2012, 13-9-2012, 22-9-2012 (UTC+8).
MA Mingguo, LI Xianglan
The dataset includes two parts that are: 1) channel flow, crop pattern, field management, and socio-economy data measured at super-station in 2008, 2010, 2011, 2012 (UTC+8), respectively. 2) irrigation data, crop pattern, and socio-economy data investigated at Daman irrigation district and Yingke irrigation district, respectively. 1.1 Objective of investigation Objectives of investigation for two parts data are to obtain crop pattern and irrigation water volume change with time, and to supply parameter for irrigation water optimal allocation model. 1.2 Investigation spots and items Investigation spots include six water management stations that are Dangzhai, Hua’er, Daman, Xiaoman, Jiantan, and Ershilidun, respectively, at Daman irrigation district. Investigation items comprise water allocation time, branch channel inflow, Dou channel inflow, irrigation area, channel water use efficiency, water price, and water fee. Investigation time is described as followed: 2012.03.16 to 2012.04.04, Spring irrigation; 2012.04.04 to 2012.05.14, Summer irrigation; 2012.05.20 to 2012.06.24, Summer irrigation; 2012.05.16 to 2012.07.06, Summer irrigation; 2012.07.15 to 2012.08.02, Autumn irrigation; 2012.08.10 to 2012.08.26, Autumn irrigation. Investigation spots include eight water management station that are Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, and Yangou, respectively, at Yingke irrigation district. Investigation time and items is described as followed: Year Data items Spots 2008, 2010, 2011 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Xiaoman county, Shangtouzha village 2012 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, Yangou 2012 Well data: Well deep, groundwater abstraction, irrigation area Chang’an, Liangjiadun, Shangqin 2012 Socio-economy data: population, agricultural income, un-agricultural income, water use for living, average residential area, education Chang’an, Xiaoman, Liangjiadun, Shangqin 2012 Field management: fertilizer name, fertilization time, fertilization rate, pesticide name, pesticide rate, time Chang’an, Xiaoman, Liangjiadun, Shangqin 2008, 2010, 2011, 2012 Crop pattern: crop name, seed time, harvest time, crop area, irrigation quota, field water use efficiency, crop yield, crop production value Xiaoman, Chang’an, Liangjiadun, Shangqin 1.3 Data collection Data was collected by cooperating with water management department of Yingke and Daman.
GE Yingchun, Xu Fengying, LI Xin
On July 7, 2012, airborne ground synchronous observation was carried out in plmr quadrats of Yingke oasis and huazhaizi desert. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern edge of Zhangye Oasis and anyangtan desert, on the west side of Zhangye Daman highway, and across the trunk canal of Longqu in the north and the south, which is divided into two parts. In the southwest, there is a 1 km × 1 km desert quadrat. Because the desert is relatively homogeneous, here 1 The soil moisture of 5 points (1 point and center point around each side, and several more points can be measured during walking along the road in the actual measurement process) is collected in KM quadrat. The four corner points are 600 m apart from each other except the diagonal direction. The southwest corner point is huazhaizi desert station, which is convenient to compare with the data of meteorological station. On the northeast side, a large sample with an area of 1.6km × 1.6km was selected to carry out synchronous observation on the underlying surface of oasis. The selection of quadrat is mainly based on the consideration of the representativeness of surface coverage, avoiding residential buildings and greenhouses as much as possible, crossing oasis farmland and some deserts in the south, accessibility, and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 11 splines (east-west distribution) were collected at the interval of 160 m in the east-west direction. Each line has 21 points (north-south direction) at the interval of 80 M. four hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 230 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
WANG Shuguo, MA Mingguo, LI Xin
This data set includes the 2013 observation data of 10 water net nodes in the 5.5km × 5.5km observation matrix (red box in the thumbnail) of Yingke / Daman irrigation area in the middle reaches of Heihe River. The 10 water net nodes contain 4cm and 10cm two-layer hydro probe II probes to observe the main variables such as soil moisture, soil temperature, conductivity and complex permittivity; the si-111 infrared temperature probe is set up at 4m height to observe the surface infrared radiation temperature of the underlying surface. The time and frequency of conventional observation is 10 minutes. In order to ensure the accurate synchronization of si-111 and remote sensing, one minute intensive observation is conducted at 00:00-04:30, 08:00-18:00 and 21:00-24:00 every day. This data set can provide spatiotemporal continuous observation data set for remote sensing estimation of key water and heat variables of heterogeneous surface, remote sensing authenticity test, ecological hydrology research, irrigation optimization management and other research. For details, please refer to "2013 middle reaches of Heihe River waternet data document 20141231. Docx"
KANG Jian, LI Xin, MA Mingguo
Soil respiration rate was measured at the super station of Daman irrigation district in Zhangye city using the open circuit soil carbon flux measurement system LI-8100 (LI-COR, Lincoln, NE, USA) 1) Objective: The aim of soil respiration rate measurement is to explore the diurnal variation characteristics of soil respiration rate and to provide a scientific basis for the assessment of farmland ecosystem carbon cycle and carbon balance. 2) Measurement instruments and ways Measurement instruments: the open type of cold dry soil carbon flux measurement system LI-8100 (LI-COR, Lincoln, NE, USA). Measurement means: soil respiration chamber was placed in PVC ring (10 cm of diameter, 5 cm of height), which was inserted into the soil about 1 to 2 cm 1 d before measurement. The observation is automatic with a power supply of solar panels. 3) Measurement time Soil respiration rate was continuously measured mainly in the corn growing season. The time used in this dataset is in UTC+8 Time. 4) Data processing The data was periodically collected from the data collection instrument and saved as *.81x file, then was converted to text format file using LI-8100 (M) PC Client v2.0.0 software.
Wang Jing, Huang Yongsheng, LI Yuan, LI Xin, MA Mingguo
The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the artificial oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included two main crops in the middle reaches of Heihe river: wheat and maize, which located in the town of Pingchuan in Linze and the Super Station of Wuxing, respectively. Observation periods lasted from mid-May to September. This dataset included the raw observation data and the pretreatment data of wheat and maize observed by LI-6400 during the observation periods. Objectives of observation: The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. Instrument and theory of the observation: (1) Measuring instrument: LI-6400XT Portable Photosynthesis System; (2) Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. Time and site of observation: (1) Observation site of the wheat: in the town of Pingchuan in Linze; Observation time: 2012-05-17,2012-06-08 to 2012-6-13; (2) Observation site of the maize: in the Super Station of Wuxing; Observation time: from 2012-05-19 to 2012-08-15. The time used in this dataset is in UTC+8 Time. Data processing: The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type + time”, every leaf was recorded 3 times, and then added a remark.
WANG Haibo
This dataset is the LAI observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 20 September 2012 (UTC+8). Measurement instruments: LAI-2000 (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: To measure the incoming sky radiation on the canopy firstly. Then the transmission sky radiation are mearued under the canopy for serveral times. The canopy LAI is retrieved by using the gap probability model.
Li Yun, Wang Yan, MA Mingguo
This dataset includes the emissivity spectrum (8-14 µm) of typical ground objects in Zhangye City, Zhangye airport, desert and farmland at Wuxing experiment area. The data was measured by the BOMEM MR304 FTIR (Fourier Transform Infrared Spectrometer). A. Objective The objective of the thermal infrared (TIR) spectrum measurement lies in: Radiometric calibration for the airborne TIR sensor, land surface emissivity products validation and collecting typical surface spectrum working as priori knowledge in land surface temperature inversion and ecological and hydrological models. B. Instruments and theory Instruments: BOMEM MR304 FTIR, Mikron M340 blackbody, BODACH BDB blackbody, diffused golden plate, Fluke 50-series II thermometer Measurement theory: The target radiance is directly measured by the MR304 FTIR under clear-sky condition while the atmospheric downward radiance is obtained through a diffused golden plate, and emissivity is retrieved by the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm C. Experiment site and targets 29-5-2012: Stone bricks, grassland and asphalt, etc at square of Zhangye. 20-6-2012: Roof of the building in Zhangye, water and sand sample collected from the desert, etc. 30-6-2012: Cement road at Zhangye airport, desert around the Zhangye airport. 3-7-2012: Corn leaves, soil and road in the farmland at Wuxing village, Zhangye City. 4-7-2012: Corn leaves, wheat canopy at Xiaoman town, Zhangye City. 10-7-2012: Bricks of Runquanhu park, Zhangye City. 13-7-2012: Corn leaves and other plants at Wuxing village, Zhangye City. D. Data processing The original data collected by BOMEM FTIR is firstly calibrated using the calibration data and get the radiance spectrum of the targets and sky (*.rad), then, the radiance data is converted to the easy readably text file (ASCII format). The time used in this dataset is in UTC+8 Time.
MA Mingguo, XIAO Qing
Zhanye Airport desert observation system can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large, homogeneous and flatten desert near by Zhangye Airport. The main vegetation type is Sparse and low shrub. The coordinates of this site: 38°4′41.30" N, 100°41′48.10" E. Observation Instrument: The observation system consists of two SI-111 infrared radiometers (Campbell, USA), one installed vertically downward to land surface, another face to south of zenith angle 35°. SI-111 sensor installed at 4.0 m height. Observation Time: This site operates from 10 June, 2012 to today. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Land surface infrared temperature (by SI-111), sky infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: TarT_Atm, Sky infrared temperature @ facing south of zenith angle 35° (℃); SBT_Atm, body temperature of SI-111 sensor (℃) measured sky; TarT_Sur, land surface infrared temperature @ 4.0 m height; SBT_Sur, body temperature of SI-111 sensor (℃) measured land surface. Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
MA Mingguo
On 29 June 2012, CASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The land cover pattern product in the middle reaches of the Heihe River Basin were obtained at a spatial resolution of 1 m, using CASI aerial data with high spatial and spectral resolution.A hierarchical classification structure integrated by pixel-based classification and object-based classification is used to obtain production.According to surveyed reference data about land cover and visual interpretation from high resolution imagery,the accuracy of the classification result of land cover was evaluated,and the result showed that overall accuracy was 84.61 %,Kappa coefficient was 0.8262.
XIAO Qing, Liu Liangyun
This data was measured in middle stream of the Heihe River Basin in year 2012. Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter were measured for each layer of the soil profile which is very close to the AMS sites. This data can be used in land surface model and ecological model. Soil profile position: The coordinate of the profile is listed as follow. No.1 to No.17 is corresponding to the AMS number in the Matrix. No. x y 1 100.3582 38.89322 2 100.3541 38.88697 3 100.3763 38.89057 5 100.3506 38.87577 6 100.3597 38.8712 7 100.3652 38.87677 8 100.3765 38.87255 9 100.3855 38.87241 10 100.3957 38.87569 11 100.342 38.86994 12 100.3663 38.86516 13 100.3785 38.86077 14 100.3531 38.85869 16 100.3641 38.8493 17 100.3697 38.84512 15 (superstation) 100.3721 38.85547 Gebi 100.3058 38.91801 Huazhaizi 100.3189 38.7652 Shenshawo 100.4926 38.78794 Instruments: Soil texture: Microtrac laser particle analyzer Porosity: Ring sampler law Bulk density: Ring sampler law Saturated Water Conductivity: hydrostatic head method Soil organic matter: Total organic carbon analyzer (TOC-VCPH) Measuring time: 2012-5-20 to 2012-7-10 (UTC+8). Measuring content: Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter.
MA Mingguo, WANG Xufeng, WANG Haibo, YU Wenping
During lidar and widas flight in summer 2012, the ground synchronously carried out the continuous observation of differential GPS of ground base station, and obtained the synchronous GPS static observation data, which is used to support the synchronous solution of aviation flight data. Measuring instrument: Two sets of triple R8 GNSS system. Zgp8001 sets Time and place of measurement: On July 19, 2012, EC matrix lidar flew and observed at mjwxb (northwest of Maojiawan) and sbmz (shibamin) two base stations at the same time On July 25, 2012, lidar of hulugou small watershed and tianmuchi small watershed in the upper reaches flew, observed in XT Xiatang, lidar of Zhangye City calibration field in the middle reaches, and observed in mjwxb (northwest of Maojiawan) On July 26, 2012, lidar flight of hulugou small watershed and tianmuchi small watershed in the upper reaches was observed in XT Xiatang, lidar flight of Zhangye City calibration field in the middle reaches was observed in HCZ (railway station) On August 1, 2012, the upper east and West branches of widas flew and observed in yng (yeniugou) On August 2, 2012, the midstream EC matrix test area widas flew and observed in HCZ (railway station) On August 3, 2012, the midstream EC matrix test area widas flew and observed in mjwxb (northwest Maojiawan) Data format: Original data format before differential preprocessing.
LIU Xiangfeng, MA Mingguo
250m/1km month compositing Fraction Vegetation Cover (FVC) data set of Heihe River Basin provides the results of monthly FVC synthesis in 2011-2014. The data is produced by using MODIS vegetation index products MOD13A2 and MOD13Q1 based on dimidiate pixel model.
ZHONG Bo, WU Junjun
On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km), Linze region and Heihe riverway. The relative flight altitude is 2500 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction.
XIAO Qing, Wen Jianguang
The albedo product was obtained based on the visible and near-infrared hyperspectral radiometer (29 June, 2012) which covered the artificial oasis eco-hydrology experimental area (5.5 km*5.5 km)with a 5 m spatial resolution.
XIAO Qing, Wen Jianguang
On 19 August 2012, a Leica ALS70 airborne laser scanner boarded by the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Aerial LiDAR-DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn