The vegetation sensor, sponsored by the European Commission, was launched by SPOT-4 in March 1998. It has received the spotvgt data for global vegetation cover monitoring since April 1998. The data is received by Kiruna ground station in Sweden, and the image quality monitoring center in Toulouse in France is responsible for image quality and provides relevant parameters (such as calibration coefficient). Finally, Belgium is responsible for image quality monitoring The Flemish Institute for technical research (Vito) vegetation processing center (ctiv) is responsible for preprocessing the data into 1km global data day by day. Preprocessing includes atmospheric correction, radiometric correction, geometric correction, and 10 day production to maximize the synthesized NDVI data, and set the value of - 1 to - 0.1 to - 0.1, and then convert to the DN value of 0-250 through the formula DN = (NDVI + 0.1) / 0.004. The dataset is a subset of China, which contains four bands of spectra synthesized every 10 days. Spot measurement (VGT) data is downloaded from the vegetation data website of Vito Institute in Belgium (http://free.vgt.vito.be), which includes the following: Spot vegation NDVI data and four band data, 10 days maximum synthesis, spatial resolution of 1km, effective time of 1998-2008, data naming specification is coverage + product type + year + month + day. Spot vector BRDF data, 10 days maximum synthesis, spatial resolution of 8km, effective time of 2001-2008, data naming specification is coverage + product type + year + month + day. Spot vectorization NPP data, 10 day maximum synthesis, spatial resolution of 8km, effective time of 1998-2006, data naming standard of "Heihe ﹣ NPP ﹣ VGT" + [1 or 2] + [year + month + day].
HU Ningke, Greet Janssens, MA Mingguo
This data is produced using knowledge rule-based land cover classification methods. It is a set of USGS global land cover classification standards that can be used in atmospheric models and land surface process models of land cover types in the Heihe River Basin. The data covers the upper, middle, and lower reaches of the Heihe River Basin. The data uses Albers Conical Equal Area projection with a spatial resolution of 1 km. It is an ASCII file containing the land cover classification code and named: Rule_Based_Lulc_of_HRB2009.asc. You can directly use a text program (such as Notepad) to open and view the file, you can also input it in ArcGIS for other operations. The NOAH land surface process parameter table and parameter table description matched with the data are provided. Users can refer to this parameter table to apply the data to the land surface process model. The two files are USGS_LULC_NOAHVEGPARM.TBL and NOAHVEGPARM_documentation.txt, both can be opened by the text program (such as Notepad).
NAN Zhuotong
Terra (EOS am-1), the flagship of the EOS earth observation series, was the first satellite to be launched on December 18, 1999.ASTER is primarily used for high-resolution observations of surface radiation balance. Compared with Landsat series satellites, ASTER has improved spectral and spatial resolution, and significantly increased short-wave infrared and thermal infrared bands.ASTER has a total of 14 wavebands, including 3 visible and near-infrared wavebands, 5 short-wave infrared wavebands and 5 thermal infrared wavebands. The resolution is 15m, 30m and 90m respectively, and the scanning width is 60km, 30m and 90m respectively.Heihe river basin ASTER remote sensing image data set through the international cooperation data from NASA's web site (https://wist.echo.nasa.gov/). Data naming rules as follows: assuming that the name of the ASTER image for "ASTL1B0103190215190103290064", then ASTL1B said ASTER L1B products, 003 on behalf of the version number namely VersionID, (010319) represents the next 6 digits observation date will be March 19, 2001, followed by six digits (021519) represents the observation time (02:15:19), followed by the last six digits (010329) representing the processing date is March 29, 2001, the last four digits (0064) representing the four-digit sequence code. At present, there are 258 scents of ASTER data in heihe river basin.The acquisition time is:2000-04-25, 2000-04-27 (2 scenes), 2000-05-04, 2000-05-15 (4 scenes), 2000-05-20 (9 scenes), 2000-05-29 (3 scenes), 2000-05-31 (2 scenes), 2000-06-12, 2000-06-14 (5 scenes), 2000-06-21 (3 scenes), 2000-06-30 (8 scenes), 2000-07-18, 2000-07-23 (3 scenes), 2000-08-03 (4 scenes),2000-08-08 (9 scenes), 2000-08-17 (7 scenes), 2000-08-19 (4 scenes), 2000-08-26 (3 scenes), 2000-09-02 (4 scenes), 2000-10-02 (7 scenes), 2000-10-04 (6 scenes), 2000-10-29 (3 scenes), 2000-11-21, 2001-02-18 (2 scenes), 2001-02-25, 2001-03-11 (5 scenes), 2001-03-22 (4 scenes),2001-03-27 (4 scenes), 2001-03-29 (9 scenes), 2001-04-07 (2 scenes), 2001-04-12 (2 scenes), 2001-04-14 (6 scenes), 2001-07-10, 2001-07-12 (8 scenes), 2001-07-21 (8 scenes), 2001-08-13 (8 scenes), 2001-08-20 (7 scenes), 2001-08-22, 2001-08-27 (2 scenes), 2001-08-29,2001-09-03 (2 scenes), 2001-11-15 (7 scenes), 2002-02-01, 2002-03-30 (2 scenes), 2002-04-17 (2 scenes), 2002-05-24, 2002-06-04 (6 scenes), 2002-06-09, 2002-06-13, 2002-06-25, 2002-08-14 (3 scenes), 2002-09-29, 2002-10-19 (2 scenes), 2002-11-11 (2 scenes),2002-12-29 (4 scenes), 2003-04-18, 2003-05-24 (2 scenes), 2003-07-25, 2003-07-30, 2003-8-10 (5 scenes), 2003-08-12, 2003-08-17, 2003-09-09 (11 scenes), 2003-09-13 (4 scenes), 2003-10-15, 2003-10-18, 2003-10-29 (9 scenes), 2003-11-30, 2004-03-14, 2005-03-20,2005-06-05, 2005-08-11, 2007-10-22, 2007-11-14, 2007-11-23, 2007-12-04, 2008-01-28, 2008-02-13, 2008-05-03 (4 scenes), 2008-05-05, 2008-05-17, 2008-06-04 (2 scenes), 2008-06-13.
National Aeronautics and Space Administration
On July 23, 1972, the United States launched the world's first resource satellite "Landsat 1" , and Landsat 2 and Landsat 3 were launched in the following 10 years. These three satellites were the first generation of resource satellites. They were equipped withreturn-beam vidicon cameras and multi-spectral scanners (MSS) with 3 and 4 spectral segments respectively, a resolution of 79m and a width of 185Km. There are 28 scenes of MSS data in Heihe River Basin currently which were obtained on the following dates: 1972-10-14, 1972-10-30, 1973-01-10, 1973-01-31, 1973-02-16, 1973-06-04, 1973. -10-07, 1973-10-28 (2 scenes), 1973-12-22, 1974-01-05, 1975-10-07, 1975-10-09, 1976-07-04, 1976-10-18 , 1976-11-07, 1976-11-27, 1976-12-30, 1977-01-19, 1977-02-07, 1977-04-20, 1977-05-06 (2 scenes), 1977-05 -08, 1977-06-10, 1977-06-29, 1977-07-18, 1978-10-09. Ortho rectification was performed on the images.
LP DAAC User Services
QuickBird satellite was launched by Digital Globe corporation on October 18, 2001. It has 4 multi-spectral bands and 1 panchromatic band, with a spatial resolution of 0.61m for panchromatic bands and a spatial resolution of 2.5m for multi-spectral bands and a width of 16.5 * 16.5 km. There are two QuickBird remote sensing images in heihe river basin.The acquisition time and coverage were: 2004-03-23, covering zhangye area;2004-08-08, covering danokou and drainage ditch drainage basin. The product level is level L2 and has been geometrically corrected by the system.
LI Xin, GUO Jianwen
This data set is a subset of 1:100000 desert spatial data in China. The 1:100000 desert spatial data set in China reflects the geographical distribution, area size, mobility and fixation degree of deserts in China. Taking the TM image of 2000 as the information source, on the basis of the coverage of the national land use map and the TM digital image information of 2000, this paper interprets, extracts, revises, and maps the sand, sand and Gravel Gobi in China by using remote sensing and geographic information system technology combined with the mapping requirements of 1:100000 scale thematic map.
WANG Jianhua
Landsat 5 was launched in March 1984 and has been in orbit for 16 years. The thematic mapper (TM) sensor on Landsat 5 consists of seven bands, all of which have a resolution of 30m except for band 6, which has a resolution of 120m. Currently, there are 23 TM data sets in heihe river basin.The obtained time was 1987-08-15, 1987-09-14, 1987-10-09, 1988-06-28, 1989-05-09, 1990-07-30, 1990-08-21 (2 scenes), 1990-08-28, 1990-08-30, 1990-09-15 (2 scenes), 1991-09-02, 1995-08-19, 1995-08-21, 2002-06-13,2003-09-12, 2007-09-23, 2008-03-17, 2008-07-07, 2008-07-23. The product is class L1 and has been geometrically corrected.
LP DAAC User Services
The Landsat TM Mosaic Image of the Heihe River Basin can be effectively applied to monitoring land-use change of the basin, which reflects the current situation of the Heihe River Basin in 2010, and provides a reliable basis for ecological planning and restoration. This mosaic image collected the TM images released by the USGS for free in 2010 (data from July to September 2010, totally 21 scenes, the maximum cloud amount is less than 10%), and the preprocessed images were geometrically registered by topographic maps(polynomial geometry correction method), then a geometrically-corrected digital mosaic map was generated, which was of high quality after a certain accuracy evaluation. The images were stored in ERDAS IMG format, and the most abundant bands 5, 4 and 3 combination, with three colors: red, green, and blue were selected to generate a color composite image. The combined composite image not only is similar to natural color, which is more in accordance with people's visual habits, but also can fully display the differences in image features because of the rich amount of information.
LP DAAC User Services
Data overview: This set of data mainly includes six prefecture level cities and 16 counties (Ganzhou District, Gaotai County, Shandan County, Minle County, Linze County, Sunan Yugu Autonomous County, Jinta County, Subei Mongolian Autonomous County, Suzhou District, Yumen City, Jiayuguan City, Yongchang County, Qilian County, Alxa Left Banner, Ejina Banner, Alxa Right Banner) in Heihe River Basin )The 12 social and economic data are: GDP, output value of primary industry, output value of secondary industry, output value of tertiary industry, per capita GDP, per capita disposable income of urban residents, per capita net income of rural residents, fixed asset investment, total retail sales of social consumer goods, fiscal revenue, fiscal expenditure, and total grain output (including all kinds of work) Output of the product). It is divided into county level and township level. The data period is 2000-2009.
ZHAO Jun
In 2007 and 2008, Landsat data set 49 scenes, covering the entire black river basin. The acquisition time is:2007-08-12, 2007-09-23, 2008-01-05, 2008-02-06, 2008-03-17, 2008-03-25, 2008-05-10, 2008-05-19, 2008-05-28, 2008-06-04, 2008-07-07, 2008-07-15, 2008-07-22, 2008-07-23, 2008-08-16, 2008-08-30,2008-09-08, 2008-09-15, 2008-09-17, 2008-10-01, 2008-10-10, 2008-10-19, 2008-10-26, 2008-11-02, 2008-11-04, 2008-11-18, 2008-11-20, 2008-11-27, 2008-12-06, 2008-12-13, 2008-12-14. The product is class L1 and has been geometrically corrected.It includes 4 scenes of TM image and 45 scenes of ETM+ image. The Landsat satellite remote sensing data set of heihe integrated remote sensing joint experiment was obtained through free download.
HU Ningke
The medium resolution imaging spectrometer (MERIS) is a sensor mounted on the ENVISAT satellite of the European Space Agency. It has 15 spectral segments and scans the earth's surface by push sweep method. The incident angle of the point below the star is 68.5 degrees and the width is 1150km. At present, there are 56 ENVISAT MERIS data in Heihe River Basin. Acquisition time: 2008-05-01, 2008-05-02, 2008-05-03, 2008-05-05, 2008-05-07, 2008-05-08, 2008-05-11, 2008-05-14, 2008-05-17 (2 scenes), 2008-05-20 (2 scenes), 2008-05-21 (2 scenes), 2008-05-23 (2 scenes), 2008-05-24, 2008-05-30, 2008-05-31, 2008-06-01, 2008-06-02, 2008-06-05, 2008-06-06, 2008-06-09, 2008-06-12, 2008-06-15, 2008-06-18, 2008-06-21, 2008-06-22, 2008-06-24 (2 scenes), 2008-06-25, 2008-06-27, 2008-06-30, 2008-07-01, 2008-07-02, 2008-07-04, 2008-07-07, 2008-07-10, 2008-07-11, 2008-07-13 (2 scenes), 2008-07-13, 2008-07-16, 2008-07-17, 2008-07-20, 2008-07-23 (2 scenes), 2008-07-26 (2 scenes), 2008-07-27, 2008-07-29, 2008-07-30, 2008-08-01, 2008-08-02. The product level is L1B without geometric correction. The ENVISAT MERIS remote sensing data set of Heihe integrated remote sensing joint experiment was obtained through the China EU "dragon plan" project (Project No.: 5322) (see the data use statement for details).
HU Ningke
The aim of the simultaneous observation of river surface temperature is obtaining the land surface temperature in different places be of different kinds of underlying surface, while the sensor of WiDAS go into the experimental areas of the upstream of Heihe river basin. All the land surface temperature data will be used for validation of the retrieved land surface temperature from WiDAS sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the authenticity of the surface temperature product from remote sensing. 1. Observation sites and other details Six places be of different kinds of underlying surface were chosen to observe surface temperature simultaneous in the upstream of Heihe river basin on 1 August. Self-recording point thermometers (observed once every 6 seconds) were used one place while handheld infrared thermometers (observed continuously during the sensor of WiDAS go into the region) were used in other five places. The main underlying surface including natural grassland, river section, river rapids, gravel. 2. Instrument parameters and calibration. The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 5 August, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.
GENG Liying, WANG Qingfeng, CAO Bin, WAN Xudong, PENG Li
This data is from the central station of environmental monitoring in gansu province. The data includes three observation elements, namely sulfur dioxide, nitrogen dioxide and inhalable particles, which are published on the network. The data format is a text file. The first column is the city name, the second column is sulfur dioxide, the third column is nitrogen dioxide, the fourth column is pm10, and the fifth column is the observation date. The data included lanzhou, jiayuguan, jinchang, baiyin, tianshui, qingyang, pingliang, dingxi, longnan, wuwei, zhangye, jiuquan and linxia. This data will be updated automatically and continuously according to the data source.
Gansu environmental monitoring center station
The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in upper reaches of the Heihe River Basin on 1 August, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted along two transects respectively located at the west and east branches of the Babaohe River and two sampling plots in the A’rou foci experimental area. Along the transects, soil moisture was sampled at every 50 m in the west-east direction. In order to keep the ground measurements following the airborne mission as synchronous as possible in temporal, measurements were made discontinuously. In the A’rou foci experimental area, two sampling plots were identified with areas of 1.5 km × 0.6 km and 0.85 km × 0.6 km. In each plot, soil moisture was sampled at every 50 m in the west-east direction and 100 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. Concurrently with soil moisture sampling, vegetation properties were measured at some typical sampling plots. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.
LI Xin, MA Mingguo, WANG Shuguo
This dataset includes one scene acquired on (yy-mm-dd hh:mm, BJT) 2012-07-06 06:30, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin. This datum was acquired at Stripmap-Quad mode with product level of SLC, and this image includes VV, VH, HH and HV polarization with a spatial resolution of 8 m. Radarsat-2 dataset was acquired from the Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences (Courtesy: Dr. Chen Quan).
the Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences
This dataset includes one scene acquired on (yy-mm-dd) 2012-09-06, covering the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. This datum contains panchromatic and multi-spectral bands, with spatial resolution of 2.5 m and 10 m, respectively. The data product level of this image is Level 1. QuickBird dataset was acquired through purchase.
China Centre for Resources Satellite Data and Application
This dataset includes one scene acquired on (yy-mm-dd) 2012-05-12, covering the Pailugou catchment. This datum is of panchromatic bands, with spatial resolution of 0.5 m. The data product level of this image is L2. WorldView dataset was acquired through purchase.
China Centre for Resources Satellite Data and Application
This dataset includes 44 scenes, covering the whole Heihe River Basin, which were acquired on (yy-mm-dd) 2012-08-25, 2012-09-03, 2012-09-08, 2012-09-13, 2012-09-18, 2012-09-23, 2012-09-28, 2012-10-03, 2012-10-13, 2012-10-18, 2012-10-22, 2012-11-01, 2012-11-11, 2012-11-21. The data are of multi-spectral bands with data product of Level 1. The spatial resolution is 1 m. ZY-3 dataset was acquired from purchase.
China Centre for Resources Satellite Data and Application
This dataset includes one scene acquired on (yy-mm-dd) 2012-07-25, covering the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. This datum contains panchromatic and multi-spectral bands, with spatial resolution of 0.6 m and 2.4 m, respectively. The data product level of this image is Level 2A. QuickBird dataset was acquired through purchase.
LI Xin
This dataset includes five scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd) 2012-04-05, 2012-04-21, 2012-05-07, 2012-06-24, 2012-07-10. The data were all acquired around 11:50 (BJT) with data product of Level 2. Landsat ETM+ dataset was downloaded from http://glovis.usgs.gov/.
United States Geological Survey (USGS) UitedStateGeologicalSurvey UitedStateGeologicalSurvey
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn