The dataset of precipitation and canopy interception observations was obtained around the Dayekou Guantan forest station (100m×100m, pure Qinghai spruce) from Jun. 1 to Oct. 10, 2008. Observations were carried out immediately after each rainfall. The following instruments have been used for the observation: the rain gauges (diameter: 20cm; 2 for controlled rainfall and 20 for throughfall), self-made rain slots (20×20×100cm, 10 for throughfall), 5 self-made stem-flow system, self-made moss and litter interception barrel (diameter: 20cm), and rain gauges of the measuring range 10.5mm.
BAI Yunjie, CHE Tao, LI Jiancheng, TAN Junlei
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the A'rou foci experimental area on Oct. 18, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by the WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
The dataset of snow density measurements was obtained in the Binggou watershed foci experimental area on Dec. 6 and Dec. 10, 2007 during the pre-observation period, to survey the snow layer and acquire the snow density for retrieval and modeling from remote sensing approaches. Observation items included: (1) Snow layer density: measured by snow shovel weighing method. Each 10cm was a unit. (2) Snow density, snow depth, snow temperature, snow-soil interface temperature, and snow grain size in BG-A. Measured were carried out in BG-A on Dec. 6, 2007, and in BG-B, BG-C and BG-D on Dec. 10, 2007. The dataset includes raw data and processed data plus GPS and calibration data for the snow shovel.
HAO Xiaohua, LIANG Ji, WANG Xufeng
The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jul. 7, 2008. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Observation items included: (1) spectrum of stellera, whin and pasture by ASD FieldSpec (350~2 500 nm) from BNU, with 20% reference board. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail, and pre-processed data on reflectance were in .txt format. (2) photosynthesis of stellera , whin and pasture by LI-6400. The data were archived in Excel format. (3) surface temperature by the handheld infrared thermometer. 25 corner points of each subsite were chosen and acquisition time, the soil temperature measured three times and the land cover types were archived. Six files were included, the stellera spectrum of diverse coverage, spectrum data for 60% and 65% coverage, stellera photos, photosynthesis, the infrared temperature synchronizing with the airplane, and WiDAS images (resolution: 1.25m, 7.5m and 10m).
GE Yingchun, LI Hongyi, Qian Jinbo, WANG Yang, YU Yingjie
The dataset of ground truth measurement synchronizing with MODIS was obtained in C1, G1 and B2 of the Biandukou foci experimental area on Mar. 12, 2008. Observation items included: (1) the surface temperature by the handheld infrared thermometer in C1, G1 and B2 from 11:30 to 12:15. The underlying surface was the deep plowed land, the rape stubble and the grassland. (2) the gravimetric soil moisture (soil samples from 0-1cm, 1-3cm, 3-5cm, 5-10cm and 10-20cm) by the microwave drying method. (3) the frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The land cover type photos were archived. Four data files were archived, MODIS data, C1 (the land cover type, the surface temperature and the vegetation parameters), G1 ( the surface temperature, the frost depth and the soil moisture) and B2 (the surface temperature, the frost depth and the soil moisture) data.
CHANG Sheng, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu, CHE Tao
The dataset of airborne imaging spectrometer (OMIS-II) mission was obtained in the Dayekou watershed flight zone on Jun. 4, 2008. Data after radiometric correction and calibration and geometric approximate correction were released. The flying time of each route was as follows: {| ! id ! flight ! file ! starttime ! lat ! long ! alt ! image linage ! endtime ! lat ! long ! alt |- | 1 || 4-13 || 2008-06-04_13-19-02_DATA.BSQ || 13:23:45 || 38.542 || 100.382 || 4624.5 || 3125 || 13:27:13 || 38.493 || 100.230 || 4617.5 |- | 2 || 4-12 || 2008-06-04_13-30-55_DATA.BSQ || 13:31:21 || 38.494 || 100.214 || 4644.9 || 2912 || 13:34:35 || 38.543 || 100.370 || 4626.3 |- | 3 || 4-11 || 2008-06-04_13-38-17_DATA.BSQ || 13:39:14 || 38.551|| 100.381 || 4616.2 || 3051 || 13:42:38 || 38.500 || 100.221 || 4656.5 |- | 4 || 4-10 || 2008-06-04_13-46-20_DATA.BSQ || 13:47:09 || 38.502 || 100.212 || 4640.3 || 2866 || 13:50:20 || 38.550 || 100.365 || 4633.4 |- | 5 || 4-9 || 2008-06-04_13-54-02_DATA.BSQ || 13:55:01 || 38.558 || 100.374 || 4644.3 || 2897 || 13:58:14 || 38.511 || 100.223 || 4628.4 |- | 6 || 4-8 || 2008-06-04_14-01-56_DATA.BSQ || 14:01:51 || 38.511 || 100.209 || 4644.6 || 2751 || 14:04:54 || 38.558 || 100.359 || 4655.7 |- | 7 || 4-7 || 2008-06-04_14-08-36_DATA.BSQ || 14:09:28 || 38.568 || 100.373 || 4630.5 || 2995 || 14:12:48 || 38.519 || 100.218 || 4642.8 |- | 8 || 4-6 || 2008-06-04_14-16-30_DATA.BSQ || 14:16:38 || 38.521 || 100.209 || 4650.1 || 2705 || 14:19:38 || 38.568 || 100.357 || 4652.9 |- | 9 || 4-5 || 2008-06-04_14-23-20_DATA.BSQ || 14:24:25 || 38.576 || 100.367 || 4649.0 || 2958 || 14:27:42 || 38.526 || 100.210 || 4673.5 |- | 10 || 4-4 || 2008-06-04_14-31-24_DATA.BSQ || 14:31:09 || 38.527 || 100.199 || 4631.3 || 2817 || 14:34:17 || 38.576 || 100.353 || 4641.7 |- | 11 || 4-3 || 2008-06-04_14-37-59_DATA.BSQ || 14:39:55 || 38.579 || 100.346 || 4599.6 || 2555 || 14:42:46 || 38.536 || 100.210 || 4612.0 |- | 12 || 4-2 || 2008-06-04_14-46-28_DATA.BSQ || 14:46:20 || 38.535 || 100.194 || 4620.5 || 2869 || 14:49:31 || 38.583 || 100.345 || 4639.2 |- | 13 || 4-1 || 2008-06-04_14-53-13_DATA.BSQ || 14:55:36 || 38.594 || 100.364 || 4621.2 || 3018 || 14:58:58 || 38.544 || 100.206 || 4606.9 |}
Liu Liangyun, LI Xin, MA Mingguo
The dataset of Land Surface Temperature (LST) observations was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas. (1) The time-continuous surface radiative temperature by the automatic thermometer (FOV: 10°; six from BNU with emissivity 0.95; two from Institute of Remote Sensing Applications with emissivity 1.00, observing at nadir at an intervals of one second. The maize canopy, the bare land and the wheat canopy in Yingke oasis maize field, the wheat canopy in Yingke oasis wheat field, the maize canopy in Huazhaizi desert maize field, vegetation and the bare land in Huazhaizi desert No. 1 and 2 plots and three intensive plots (Huazhaizi desert No. 3 plot, the barley field and the maize field near the resort) were measured on May 20, 24, 28, 30 and 31, Jun. 1, 3, 4, 16, 29 and 30, Jul. 1, 7, 9 and 11, 2008. The dataset of ground truth measurement was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II, TM, ASTER, MODIS, Hyperion and CHRIS. Diurnal variation in the radiative temperature was recorded as well. Raw data, blackbody calibrated data and processed data were archived in Excel format. (2) the surface radiative temperature by the handheld infrared thermometer (FOV:1°; accuracy: 0.1°C) in Yingke oasis maize field and wheat field, Huazhaizi desert maize field, No. 1 and 2 plots, and the maize field at the resort on May 20, 28, 30 and 31, Jun. 1, 4, 16 and 29, Jul. 4, 7 and 11, 2008. Besides, the four component temperature was also measured in Yingke oasis maize field and wheat field, Huazhaizi desert maize field. Raw data and processed data on the surface radiative temperature were archived.
CHAI Yuan, CHEN Ling, KANG Guoting, QIAN Yonggang, REN Huazhong, REN Zhixing, WANG Haoxing, WANG Tianxing, YAN Guangkuo, SHU Lele, Liu Qiang, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, SHEN Xinyi, LI Xinhui, YANG Guijun, LI Xiaoyu, HUANG Bo
The dataset of forest canopy gap fraction above the rain gauges observed by the camera (PENTAX K100D, 2400×1600) was obtained at the super site (100m×100m, Qinghai spruce) around the Dayekou Guantan forest station from 9:00-10:40 on Jun. 4, 2008. Observation items included the ground-based LiDAR scanning, the total station measuring, DGPS, tally investigation, LAI, canopy spectrum, camera observations of the canopy, soil evapotranspiration, the soil frozen tube observations, surface roughness, precipitation interception, soil moisture and dry-wet weight of the forest component. A subplot (25m×25m) was chosen for precipitation interception observations with different canopy density, and 32 sets of photos were taken 1m above the ground. Through studying those photos, the number and location of rain gauges could be determined; and then the canopy density could also be further developed.
BAI Yunjie, CHE Tao, LI Jiancheng, TAN Junlei, Qu Yonghua, ZHOU Hongmin
The dateset of TIR (Patent No.: ZL 02 2 37640.2) emissivity measurements was obtained in No. 3 quadrate of the A'rou foci experimental area on Mar. 14, 2008. The observation site was covered with dry pasture with height less than 5cm, in which the center point of each grid was measured twice and was named in the form of A3-9 (number 9 point in No. 3 quadrate of A'rou). Each measurement was carried out at 45° and followed strictly the order: Tsky, Tcha, Tsm and Tcm. Meanwhile, the surface temperature was also acquired by the handheld infrared thermometer and the thermal imager (FLIR ThermaCAM). [emissivity=1- (Tcm^4 – Tsm^4)/ (Tcha^4 – Tsky^4)]. Those provide reliable data for retrieval and study of the surface temperature, and energy and radiation balance.
CAO Yongpan, GU Juan, LI Hua
The dataset of ground truth measurements synchronizing with ASTER was obtained in the saline plot B, the alfalfa plot D and the barley plot E of the Linze grassland foci experimental area on May 28, 2008. 49 points at intervals of 60m in each plot (360m×360m) were selected and observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer from east to west in the saline plot B, the alfalfa plot D and the alfalfa plot E. Each point was numbered, such as D22-23, indicating from No. 22 to 23 in the alfalfa plot D. In the salineplot B, 5 measurements were carried out each 5m; in the alfalfa plot D and the barley plot E, measurements were at random. Calibration information was archived in the hand-held infrared thermometer calibration.xls. (2) soil gravimetric moisture, volumetric moisture, and soil bulk density after drying measured by the cutting ring and the mean soil temperature from 0-5cm measured by the probe thermometer in plot B; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, and the mean soil temperature from 0-5cm measured by the probe thermometer in plot D; soil moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were measured by WET, and the mean soil temperature from 0-5cm by the probe thermometer in plot E. Six Excel files on soil moisture and the land surface radiative temperature in plot B, D and E were archived. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HAN Xujun, HAO Xiaohua, HUANG Chunlin, LIANG Ji, MA Mingguo, WANG Shuguo, WU Yueru, FENG Lei, YU Fan
The dataset of spectral reflectance observations of the Picea crassifolia was obtained at the super site around the Dayekou Guantan forest station. Six measurements were carried out altogether, including three outdoors and three indoors. (1) Outdoor multiangle (-60°, -50°, -40°, -30°, -20°, -0°, 10°, 20°, 30°, 40°, 50° and 60°) and four-component (the sunshine and the shaded canopy, the sunshine and the shaded land) spectrum of Qinghai spruce was measured by ASD, FieldSpec Pro and the observation platform (of BNU make) on Jun. 10 and 11, 2008. Optical fibres of 1m and 10m were used as required. Data were archived as Excel files. (2) Indoor observations by the integrating sphere, Li-Cor 1800-12s (BNU), ASD and FieldSpec Pro were carried out on Jun. 5, 0 and 10, 2008. They were mainly for trees of different ages, reflectance of Qinghai spruce bark, and reflectance and transmission. The data can only be opened by ASD ViewSpecPro; the processed spreadsheet file can be opened by Microsoft Excel. (3) Vertical ground object (scrub, meadow, moss, the shaded moss, litter, the bare land, Qinghai spruce of different ages) spectrum was measured by ASD and FieldSpec Pro on Jun. 4, 2008. Optical fibres of 1m and 10m were used as required.
SONG Jinling, FU Zhuo, GUO Xinping, WANG Xinyun, WANG Qiang, WANG Bengyu
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 1, 2008. Observation items included: (1) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (2) BRDF of maize by ASD (350~2 500 nm) from Institute of Remote Sensing Applications (CAS) and the self-made multi-angluar observation platform of BNU make in Yingke oasis maize field. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°. An automatic thermometer was attached to the platform for the multiangle radiative temperature. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel. (3) The radiative temperature of the maize canopy by the automatic thermometer (emissivity: 0.95),at a hight of 50cm from the crown in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (4) Atmospheric parameters at the resort by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (5) The multiangle radiative temperature by the automatic thermometer (emissivity: 1.0) attached on the observation platform, at an interval of 0.05s. The data were archived in .txt files (.dat format). The first seven lines were the header file, including acquisition date, time, and intervals; besides, Time (starting time), TObj (target temperature), Tint (the interior temperature of the probe), TBox (the temperature of the box) and Tact (the actual temperature calculated from the given emissivity) were also listed.
CHEN Ling, REN Huazhong, XIAO Yueting, SU Gaoli, WU Mingquan, WU Chaoyang, XIA Chuanfu, ZHOU Chunyan, ZHOU Mengwei, SHEN Xinyi, YANG Guijun
The dataset of ground truth measurement synchronizing with ALOS PALSAR was obtained in the Linze station foci experimental area on Jun. 27, 2008. The data were in FBD mode and HH/HV polarization combinations, and the overpass time was approximately at 23:41 BJT. Soil moisture (0-5cm) was acquired by the cutting ring (50cm^3) meanwhile in the west-east desert strip (the corner point in 40 subplots) and north-south strip (the corner point and the center point in 40 subplots). The quadrate location was listed in coordinates.xls file and data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
BAI Yanfen, SHU Lele, SONG Yi, WANG Yang, DONG Jian, YU Yingjie
The dataset of evaportranspiration measured by micro-lysimeter was obtained at the super site (100m×100m, pure Qinghai spruce) around the Dayekou Guantan forest station. Observation items included the ground-based lidar scanning, the total station measuring, DGPS, tally investigation, LAI, canopy spectrum, camera observations of the canopy, soil evapotranspiration, the soil frozen tube observations, surface roughness, precipitation interception, soil moisture and dry-wet weight of the forest component. Observation time was 18:00 every day from Jun. 1 to Dec. 31, 2008. 20 rain gauges, 4 self-made Lysimeter (diameter: 20cm) and the electronic balance were used. Those provide reliable data for retrieval of evapotranspiration from remote sensing data.
BAI Yunjie, CHE Tao, LI Jiancheng, TAN Junlei
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.
CHE Tao, BAI Yunjie, DING Songchuang, GAO Song, HAN Xujun, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe, LIANG Ji, PAN Xiaoduo, QIN Chun, RAN Youhua, WANG Xufeng, WU Yueru, YAN Qiaodi, ZHANG Lingmei, FANG Li, LI Hua, Liu Qiang, Wen Jianguang, MA Hongwei, YAN Yeqing, YUAN Xiaolong
The dataset of ground truth measurements synchronizing with Terra MISR and MODIS was obtained in sampling plot BG-A of the Binggou watershed foci experimental area on Dec. 10 and Dec. 11, 2007 during the pre-observation period. Observation items included: (1) Snow parameters including the snow surface temperature, the snow-soil interface temperature, the land surface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, snow depth by the ruler and the snow grain size by the handheld microscope. (2) Snow density in "WATER: Dataset of snow density measurements in the Binggou watershed foci experimental area on Dec. 6 and Dec. 10, 2007 during the pre-observation period" (3) Snow properties in "WATER: Dataset of snow properties measured by the Snowfork in the Binggou watershed foci experimental area during the pre-observation period" Raw data and pre-processed data including snow parameters synchronizing with Terra MISR and MODIS and the temperature synchronizing with MODIS were archived herein.
LI Xin, WANG Jian, MA Mingguo, Wang Weizhen, CHE Tao, HAO Xiaohua, LI Hongyi, LIANG Ji, BAI Yunjie, WANG Xufeng, WU Yueru, WANG Yang, LUO Lihui, ZHANG Pu, LIU Yan
The dataset of intensive snow parameter measurements was obtained in the Binggou watershed foci experimental area on Mar. 11, 2008. Those provide reliable data for retrieval of snow parameters from remote sensing approaches. Observation items included the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case, the snow surface temperature by the handheld infrared thermometer, and the snow-soil interface temperature by the handheld infrared thermometer in three plots in BG-Z. 4 points were selected and measured 4 times in each plot. Two files including raw data and preprocessed data (3 subfolders enclosed) on snow properties were archived; besides, profile pictures of each point were also included.
MA Mingguo, BAI Yanfen, BAI Yunjie, GE Chunmei, GU Juan, HAO Xiaohua, LI Hongyi, LI Zhe, LIANG Ji, SHU Lele, WANG Jianhua, WANG Xufeng, WU Yueru, XU Zhen, FANG Li, LI Hua, CHANG Cun, DOU Yan, MA Zhongguo, LIU Yan, ZHANG Pu, MA Hongwei, YAN Yeqing, YUAN Xiaolong
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Linze station foci experimental area on May 25, 2008. Observation items included: (1) soil moisture (0-5cm) measured once by the cutting ring method in the corner points of the 40 subplots of the west-east desert transit zone strip , three times in the corner points of the nine subplots of the north-south desert transit zone, once by the cutting ring and once by ML2X Soil Moisture Tachometer in the center points of nine subplots of the farmland quadrates. The preprocessed soil volumetric moisture data were archived as Excel files. (2) the surface radiative temperature by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in the west-east and north-south desert transit zone strip (various times synchronizing with the airplane), and Wulidun farmland quadrates (repeated twice at intervals of 15m from east to west). There are 34 sample points in total and each was repeated three times synchronizing with the airplane. Photos were taken. Data were archived as Excel files. (3) maize BRDF once by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as text files (.txt). See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
DING Songchuang, GAO Song, PAN Xiaoduo, Qian Jinbo, WANG Yang, ZHU Shijie, LI Jing, XIAO Zhiqiang
The dataset of diurnal change of FPAR observations was obtained by the quantum meter in the Linze grassland foci experimental area. Incident and reflected radiation of canopy, and land surface in reed, saline grass, alfalfa, cumin and barley were measured and diurnal changes of PAR and Fpar were also acquired. Observations were carried out: In plot E (barley) and cumin field on Jun. 6, 2008; plot D (alfalfa) and plot E on Jun. 11; plot D and E on Jun. 15; plot E on Jun. 16; plot A (reed) on Jun. 20; plot B (saline) on Jun. 22; plot D and E on Jun. 23; plot B (saline) on Jun. 24; plot A and plot E on Jun. 29. 14 Excel files, one Word and one .TXT were archived. See Water: The dataset of setting of the sampling plots and stripes in the Linze grassland foci experimental area for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HU Xiaoli, HUANG Chunlin, LIANG Ji, NIAN Yanyun, WANG Shuguo, WANG Xufeng, WU Yueru, LI Xiaoyu
The dataset of ground truth measurements for snow synchronizing with EO-1 Hyperion was obtained in the Binggou watershed foci experimental area on Mar. 22, 2008. Those provide reliable data for retrieval of snow parameters from remote sensing approaches. Observation items included: (1) snow surface emissivity by the portable emissivity determinator near the Binggou cold region hydrometerological station; (2) snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-A from 11:20-13:53 (BJT) on Mar. 2, 2008; (3) snow parameters in BG-A, BG-B, BG-C, BG-D, BG-E and BG-F, and variables including the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case and the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer simultaneous with the satellite; (4) the land surface infrared temperature in BG-D, BG-E, BG-B and BG-F during the airborne mission; (5) fresh snow albedo by the total radiometer east to A2; (6) snow spectrum by the portable ASD from Xinjiang Meteorological Administration and Nanjing University, GPS recordings enclosed. Two files including raw data and preprocessed data were archived.
BAI Yanfen, BAI Yunjie, CAO Yongpan, GE Chunmei, GU Juan, HAN Xujun, HAO Xiaohua, HUANG Chunlin, LIANG Ji, SHU Lele, WANG Xufeng, WU Lizong, XU Zhen, ZHU Shijie, MA Mingguo, FANG Li, LI Hua, CHANG Cun, DOU Yan, MA Zhongguo, JIANG Tenglong, XIAO Pengfeng , LIU Yan, ZHANG Pu, MA Hongwei, SUN Jicheng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn