The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in No. 1 and No. 3 quadrates of the A'rou foci experimental area on May 31, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were the surface radiative temperature and surface soil moisture. The surface radiative temperature (emissivity: 1.0) was measured by the automatic thermometer at intervals of 0.05s, and the data were archived as .txt files (.dat format). The first seven rows were the header file, including acquisition date, time, and intervals; besides, Time (starting time), TObj (target temperature), Tint (the interior temperature of the probe), TBox (the temperature of the box) and Tact (the actual temperature calculated from the given emissivity) were also listed. Soil moisture (0-12cm and 0-20cm) was measured by TDR. The data including the soil temperature, soil complex permittivity and soil conductivity, were archived in Excel format.
HUANG Chunlin, GE Chunmei, HAN Xujun, LI Li, XIN Xiaozhou, ZHOU Mengwei
The dataset of ground truth measurement synchronizing with Landsat TM was obtained in the A'rou foci experimental area from Jul. 10 to Jul. 12, 2008. The stellera and the whin coverage were mainly measured. Photos were taken in No. 2 quadrate of A'rou and an optional stellera land for coverage mesurement from Jul. 10 to 11, shooting straight downwards at the height of 1.5 m. The fisheye camera was Nikon D80 with a lens of Sigma 8mm F3.5 EX DG CIRCULAR FISHEYE. The vegetation height was measured on Jul. 12. One grid of 5m×5m was chosen in each of the eight quadrates (60m×60m or 120m×120m) and compartmentalized into 2.5m×2.5m, in which GPS positions by GARMIN GPS 76, species, the plant number and height were measured. Four files were included, the quadrates coordinates, stellera observations in No. 2 quadrate, the stellera quadrat investigation and TM quadrate investigation.
BAI Yanfen, Qian Jinbo, GAO Song, HAO Xiaohua, SHU Lele
The dataset of land use and land cover investigation was obtained in the arid region hydrology and forest hydrology experiment areas. It included: (1) Land cover investigations in Linze grassland, Yingke oasis, Huazhaizi desert, Dayekou watershed and Zhangye city from May 27 to 31, 2008. GPS data, photos and detailed descriptions were recorded. (2) Land use and land cover investigations in Yingke oasis, Huazhaizi desert and Biandukou foci experimental areas on Jul. 7, 8, 10, 11, 12, 13, 14 and 15, 2008. Data were archived in shapefile, spreadsheet or JPGE formats.
BAI Yanchen, LIU Zhigang, FU Zhuo, LI Bo, LIN Haobo, SONG Danxia, SUN Zhichao, GONG Hao, ZHU Man
The dataset of ground truth measurement synchronizing with ALOS PALSAR was obtained in the Linze grassland foci experimental area on Jun. 10, 2008. The data were in FBS mode and HH/HV polarization combinations, and the overpass time was approximately at 23:39 BJT. Observations were carried out in plots A, B, C, D and E, which were divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring and the mean soil temperature from 0-5cm by the probe thermometer were measured in A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, and the mean soil temperature from 0-5cm by the probe thermometer in D and E. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
BAI Yanfen, CAO Yongpan, GE Chunmei, HU Xiaoli, WANG Shuguo, Wang Weizhen, WU Yueru, ZHU Shijie, FENG Lei
The dataset of sun photometer observations was obtained in the Zhangye city foci experimental areas (38°56′8.9″N, 100°27′8.3″E, 1400m) from Mar. 30 to Apr. 2, 2008. Measurements were carried out by CE318 for 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data on Mar. 30 and 31, Apr. 1 and 2, 2008. Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters need correcting. Thus field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see “Geometric Positions and the Total Optical Depth of Each Channel” and “Rayleigh Scattering and Aerosol Optical Depth of Each Channel”).
FANG Li, SU Gaoli
From May 2008 to July 2008, several synchronous observation quadrats were set up in the intensive observation area of Linze grassland. According to the spatial resolution of transit sensing, a 1.8km × 1.8km quadrat h and five 360m × 360m quadrats a, B, C, D and E are set up within 2km × 2km around Linze grassland station. There are 64 sampling points in sample h, numbered H01 to H64, and the distance between two adjacent points is 250m, mainly for MODIS synchronization. The sample a, B, C, D and e of 360m × 360m contains 49 sample points, the sample spacing is 60m, and the sample number is 01-49 (for example, sample a is a01-a49). The surface type of sample a is Phragmites australis, the surface type of sample B is saline alkali, and there are sparse Phragmites australis. The surface type of sample C is saline alkali, and Phragmites australis is more sparse than that of sample a. the surface type of sample D is alfalfa, and the surface type of sample e is alfalfa The type of table is barley field. A small sample of 120m × 120m is nested in each sample of a, B, C, D and e. the spacing of sample points in the small sample is 30m (see "sample distribution. PDF" in the data folder). Quadrats a, B, C, D, e and their nested small quadrats are mainly for ASAR, PALSAR, aster and airborne OMIS, widas synchronization. In addition, there are 7 microwave synchronous transects with 25 sampling points in each transect. The interval between the transects is 200m, and the interval between the sampling points on the transect is 100m. The No. l3-11 indicates the No. 11 sampling point on the No. 3 transect. PR2 is a 3 grid × 3 grid quadrat, and the distance between sampling points is 30 m. The number is pr11. There are also two PR2 transects, a total of 11 transects. The coordinates of all sample points are in Excel.
WANG Xufeng, WU Lizong, Qu Yonghua, LI Hongxing, ZHOU Hongmin, HUANG Chunlin
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands, between 8:06~11:17BJT) and thermal imager mission (between 12:48~16:35BJT) was obtained in L2, L3, L4, L5 and L6 of the A'rou foci experimental area on Apr. 1, 2008. The samples were collected every 100m along the strip from south to north in the the morning and from north to south in the afternoon. In L2, L4 and L6, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L3, soil volumetric moisture was acquired by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L5, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were acquired by WET, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Besides, the handheld thermal imager observations were carried out in L4. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches. Seven files were included, two ground-based microwave radiometers (L&K-band and L-band) observations, L2 data, L3 data, L4 data, L5 data and L6 data.
GE Chunmei, GU Juan, HAN Xujun, HAO Xiaohua, HU Zeyong, HUANG Chunlin, LI Zhe, LIANG Ji, MA Mingguo, SHU Lele, Wang Weizhen, WU Yueru, ZHU Shijie, LI Hua, CHANG Cun, DOU Yan, MA Zhongguo
The dataset of ground truth measurements for snow synchronizing with MODIS was obtained in the Binggou watershed foci experimental area on Mar. 19, 2008. Those provide reliable data for retrieval and verification of the snow temperature through airborne and satellite-borne remote sensing approaches. Observation items included: (1) Snow parameters, such as snow depth by the ruler (five measurements at random each point), the snow surface temperature by the infrared thermometer (several measurements at random), the snow layer temperature by the probe thermometer (10cm as an interval and two times each point), the snow grain size by the handheld microscope (10cm as an interval and three times each point) in BG-B from 12:40-13:00 (BJT) with the satellite overpass on Mar. 19, 2008. 64 points were selected by four groups. (2) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A,automatically in coordination with ASD. (3) The snow spectrum by the portable ASD. (4) Snow albedo by the portable radiometer in BG-A. Two files including raw data and preprocessed data were archived.
BAI Yanfen, BAI Yunjie, GE Chunmei, HAO Xiaohua, LIANG Ji, MA Mingguo, SHU Lele, WANG Xufeng, XU Zhen, ZHU Shijie, DOU Yan, LIU Yan, ZHANG Pu
The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were mainly the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, GE Chunmei, HU Xiaoli, HUANG Chunlin, WANG Shuguo, Wang Jing
The dataset of surface roughness measurements was obtained in the reed plot A, the saline plots B and C of the Linze grassland foci experimental area on Jun. 7, 18 and 25, 2008. All the quadrates were divided into 4×4 subsites, with each one spanning a 120×120 m2 plot. With the roughness plate 110cm long and the measuring points distance 1cm, the samples were collected from south to north and from east to west, respectively. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The original photos of each sampling point, surface height standard deviation (cm) and correlation length (cm) were included this dataset. The roughness data were initialized with the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 needles is also included for further checking.
CAO Yongpan, GE Chunmei, WANG Shuguo, WANG Xufeng, WU Yueru, FENG Lei, YU Fan, WANG Jing
The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Linze station foci experimental area on Jun. 6, 2008. Observation items included: (1) soil moisture (0-5cm) measured by the cutting ring (50cm^3) along LY06, LY07 and LY08 strips (repeated nine times). The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured by three handheld infrared thermometers (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in LY06 and LY07 strips. There are 49 sample points in total and each was repeated three times synchronizing with the airplane. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
GAO Song, HAO Xiaohua, PAN Xiaoduo, Qian Jinbo, SONG Yi, WANG Yang
The dataset of groundwater level was obtained by the automatic water gauges at an interval of 1 hour from Dec. 25 2007 to Jul. 6, 2009. In order to monitor changes in the groundwater level and in the groundwater temperature in the cold region hydrology experiment area, six sets of instruments (the HOBO pressure type mario/thermograph: U20-001-01; U20-001-01-TI) were scattered by Cold and Arid Regions Environmental and Engineering Research Institute, CAS in the Yingke oasis, Xinmiao village in Daman township, Daman Water Management office, Wangqizha village in Xiaoman township, Yanhe village in Mingyong county, Xiaowan village in Wujiang township and Liuquan village in Xindun township respectively. The items were mainly the groundwater pressure and the groundwater temperature . Based on the air pressure obtained in the Yingke oasis station, the groundwater pressure by HOBO could be changed into the grounwater depth, and the groundwater level could be developed by differential GPS.
TAN Junlei, Qian Jinbo, MA Mingguo, WANG Xufeng
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained along the sample lines 1, 2, 3, 4, 5 and 6 of the Linze grassland foci experimental area on May 25, 2008. Complementary measurements were carried out along Line 7 on Jun. 2. 25 points at intervals of 100m were selected at each line. Simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured three times by the hand-held infrared thermometer in L1, L2, L3 and L4; soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were measured by WET, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured three times by the hand-held infrared thermometer in L5 and L6; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density measured by the cutting ring in L7. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, GE Chunmei, HAN Xujun, HUANG Chunlin, RAN Youhua, SONG Yi
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Linze grassland foci experimental area on Jul. 4, 2008. Simultaneous ground observations on the land surface radiative temperature, the soil temperature and soil moisture were carried out along sampling stripes of newL1-newL12 (each has five points). At each point, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring, the mean soil temperature from 0-5cm by the probe thermometer, the canopy temperature and the land surface temperature by the hand-held infrared thermometer were measured. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
GE Chunmei, HU Xiaoli, HUANG Chunlin, LI Hongxing, WANG Xufeng, ZHU Shijie, Wang Jing
The dataset of canopy structure and biophysical parameter measurements was obtained in the Linze grassland foci experimental area. Detailed information was as follows: {| !Observation item !observation time !plot |- | The leaf angle || 2008-06-24 || E |- | The leaf angle || 2008-06-29 || A E |- | Vegetation biomass || 2008-06-18 || A D E |- | Vegetation biomass || 2008-06-24 || A E |- | Vegetation biomass || 2008-06-29 || A E |- | Plant height || 2008-05-26 || A D E |- | Plant height || 2008-06-14 || B |- | LAI || 2008-05-28 || E |- | LAI || 2008-06-05 || E |- | LAI || 2008-06-06 || A |- | LAI || 2008-06-11 || A |- | LAI || 2008-06-18 || D E |- | Coverage || 2008-5-27 || subplots (30m) in A, D and E |- | Coverage || 2008-5-26、27 || plots (360m) in D and E |- | Coverage || 2008-6-14 || plots (360m) in B |- |} Data were archived in Excel and txt file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HU Xiaoli, HUANG Chunlin, NIAN Yanyun, WANG Shuguo, WANG Xufeng, WU Yueru, WANG Jing, LI Xiaoyu
The dataset of ground truth measurements synchronizing with MODIS was obtained in C1, W2 and B2 of the Biandukou foci experimental area from 12:00-15:00 on Mar. 14, 2008. Observation items included: (1) the frost depth from 11:37-12:11 by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The cover type photos were archived. (2) the gravimetric soil moisture (soil samples from 0-1cm, 1-3cm, 3-5cm, 5-10cm and 10-20cm) by the microwave drying method. (3) the surface radiative temperature by the handheld infrared thermometer and the physical temperature by the thermocouple thermometer. (4) the soil roughness, which can be acquired from related dataset of other period.
CHANG Sheng, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area from 8:25 to 11:15 BJT on Mar. 21, 2008. Observation items included: (1) microwave radiometer observations; (2) the surface radiative temperature by the handheld infrared thermometer and the physical temperature by the thermocouple thermometer; (3) the frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal; (4) Snow depth by the ruler; (5) the gravimetric soil moisture (soil samples from 0-1cm, 1-3cm and 3-5cm) by the microwave drying method. The volumetric moisture can be calculated by the gravimetric moisture and bulk density. The data can be opened by Microsoft Office. The sample point coordinates were also included.
CHANG Sheng, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, CHE Tao, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of airborne LiDAR mission at the super site in the Dayekou watershed flight zone on Jun. 23, 2008 included peak pulse data (*.LAS), full waveform data (.lgc), CCD photos, DEM, DSM and DOM. The flight routes were as follows: {| ! flight route ! startpoint lat ! startpoint lon ! endpoint lat ! endpoint lon ! altitude (m) ! length (km) ! photos |- | 1 || 38°31′59.71″ || 100°14′54.02″ || 38°31′43.04″ || 100°15′44.28″ || 3550 || 1.3 || 7 |- | 2 || 38°32′01.21″ || 100°14′54.82″ || 38°31′44.53″ || 100°15′45.08″ || 3550 || 1.3 || 7 |- | 3 || 38°32′02.70″ || 100°14′55.62″ || 38°31′46.03″ || 100°15′45.88″ || 3550 || 1.3 || 7 |- | 4 || 38°32′04.20″ || 100°14′56.42″ || 38°31′47.52″ || 100°15′46.69″ || 3550 || 1.3 || 7 |- | 5 || 38°32′05.69″ || 100°14′57.23″ || 38°31′49.01″ || 100°15′47.49″ || 3550 || 1.3 || 6 |}
NI Wenjian, BAO Yunfei, ZHOU Mengwei, WANG Tao, CHI Hong, FAN Fengyun, LIU Qingwang, PANG Yong, LI Shiming, HE Qisheng, Liu Qiang, LI Xin, MA Mingguo
The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 2, 2008. Measurements were carried out twice at intervals of 125m in four quadrates (2km×2km), which were H01-H08, H09-H16, H17-H24 and H25-H32 respectively. Simultaneous ground data were mainly the canopy temperature, the half-height temperature, the land surface radiative temperature and the soil temperature (0-5cm) by the probe thermometer. For soil moisture, the soil temperature, soil moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring inNo.1 quadrats (H01-H08), No.2 (H09-H16) and No.3 (H17-H24); and in No.4 quadrat 4 (H25-H32), soil moisture, soil conductivity, the soil temperature, the real part of soil complex permittivity were acquired by WET, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring. Complementary measurements were carried out on Jun. 3, 2008. The soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring in H41-H48, H49-H56 and H57-H64; and in H33-H40, soil moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were acquired by WET, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring. Data were archived in Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area for more information.
CHAO Zhenhua, NIAN Yanyun, WANG Xufeng, LIANG Wenguang
The dataset of snow properties measured by the Snowfork was obtained in the Binggou watershed foci experimental area from Dec. 5-16 2007, during the pre-observation period. The aims of the measurements were to verify applicability of the instruments and to acquire snow parameters for simultaneous airborne, satellite-borne and ground-based remote sensing experiments and other control experiments. Observation items included: (1) physical quantities by direct observations: resonant frequency, the rate of attenuation and 3db bandwidth (2) physical quantities by indirect observations: snow density, snow complex permittivity (the real part and the imaginary part), snow volumetric moisture and snow gravimetric moisture. Five files including raw data and processed data are kept, data by the Snowfork on Dec 5, data by BG-A MODIS on Dec 6 and 7, data in BG-B, BG-C, BG-D and BG-E on Dec 10, and data in BG-D with the microwave radiometer on Dec 14 and 16.
HAO Xiaohua, LIANG Ji
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn