The data set include crop biomass observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the EC plots, the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop biomass, a key biophysical parameter, was observed for calibration and validation of crop growth model and the retrieval of other biophysical parameters as well as the application in eco-hydrological models. 2) Measurement instrument: Electronic balance (±0.1g) and oven. 3) Measurement site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The wheat biomass for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the EC site Maize biomass at 14 EC site (EC-2,EC-3,EC-5,EC-6,EC-7,EC-8,EC-9, EC-10, EC-11, EC-12, EC-13, EC-14, EC-15, EC-16) are measured on 14, 21, 25 and 31 May, 7, 13, 23 and 28 June, 3, 13, 18 and 23 July, 3, 12 and 28 August. c. the super station Maize biomass at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. d. the Shiqiao sample site Maize biomass at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets.
Xu Fengying, Wang Jing, Ma Chunfeng, Huang Yongsheng, LI Xin, MA Mingguo
A land surface temperature observation system was set up in apple orchard near by the No.17 eddy covariance system of the MUlti-Scale Observation experiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). This observation site can offer in situ calibration data of apple trees for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large and homogeneous apple orchard in Zhangye Experiment Field, Gansu Academy of Agricultural Sciences. It’s 4 meters away from southwest of No.17 eddy covariance system, and observation height is 4.55 m. Crown size of observed apple tree is 4 m × 4 m. Underlying surface of observation site is mainly apple trees. The coordinates of this site: 38°50′41.70" N,100°22′11.40" E. Observation Instrument: The observation system consists of one SI-111 infrared radiometers (Campbell, USA) installed vertically downward to apple tree. Observation Time: This site operates from 3 August, 2012 to 27 September, 2012. Observation data laagered by every 1 minute uninterrupted. Output data contained sample data of every 1 minute. Accessory data: Land surface (apple tree) infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: Target_C_Avg, apple tree temperature @ 4.55 m (℃); SBT_C_Avg, body temperature of SI-111 sensor (℃). Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 22 to 24, 2013 in Desert Park desert, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 22-24, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 7.4M 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
The dataset includes the chlorophyll content of vegetation in different site which has different types of vegetation, acquired on 8 July, 2012, in order to validate the Chlorophyll products. Observation instruments: Sampling, Acetone extraction method Measurement methods: To analyze the influence height on chlorophyll , we select 12 different corn samples based on the height of corn. To compare the chlorophyll content of different types of vegetation, we also select 3 types of vegetation sample on the first EC tower, 1 beans sample near the seventeenth EC tower and 3 reed samples on wetland. A total of selected 19 different samples are analyzed in the laboratory in the College of Life Science, Hexi. We extract chlorophyll a, chlorophyll b, the content of total chlorophyll of selected samples. Dataset contents: Chlorophyll a, chlorophyll b, the content of total chlorophyll Measurement time: 8 July, 2012
Jia Shuzhen
This data includes the coverage data set of vegetation in one growth cycle in five stations of Daman super station, wetland, desert, desert and Gobi, and the biomass data set of maize and wetland reed in one growth cycle in Daman super station. The observation time starts from May 10, 2014 and ends on September 11, 2014. 1 coverage observation 1.1 observation time 1.1.1 super station: the observation period is from May 10 to September 11, 2014. Before July 20, the observation is once every five days. After July 20, the observation is once every 10 days. A total of 17 observations are made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 1.1.2 other four stations: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; Other four stations: May 10, 2014, May 20, 2014, May 30, 2014, June 10, 2014, June 20, 2014, June 30, July 10, 2014, July 20, August 5, 2014, August 17, 2014, September 11, 2014 1.2 observation method 1.2.1 measuring instruments and principles: The digital camera is placed on the instrument platform at the front end of the simple support pole to keep the shooting vertical and downward and remotely control the camera measurement data. The observation frame can be used to change the shooting height of the camera and realize targeted measurement for different types of vegetation. 1.2.2 design of sample Super station: take 3 plots in total, the sample size of each plot is 10 × 10 meters, take photos along two diagonal lines in turn each time, take 9-10 photos in total; Wetland station: take 2 sample plots, each plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 3 other stations: select 1 sample plot, each sample plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 1.2.3 shooting method For the super station corn and wetland station reed, the observation frame is directly used to ensure that the camera on the observation frame is far higher than the vegetation crown height. Samples are taken along the diagonal in the square quadrat, and then the arithmetic average is made. In the case of a small field angle (< 30 °), the field of view includes more than 2 ridges with a full cycle, and the side length of the photo is parallel to the ridge; in the other three sites, due to the relatively low vegetation, the camera is directly used to take pictures vertically downward (without using the bracket). 1.2.4 coverage calculation The coverage calculation is completed by Beijing Normal University, and an automatic classification method is adopted. For details, see article 1 of "recommended references". By transforming RGB color space to lab space which is easier to distinguish green vegetation, the histogram of green component A is clustered to separate green vegetation and non green background, and the vegetation coverage of a single photo is obtained. The advantage of this method lies in its simple algorithm, easy to implement and high degree of automation and precision. In the future, more rapid, automatic and accurate classification methods are needed to maximize the advantages of digital camera methods. 2 biomass observation 2.1 observation time 2.1.1 corn: the observation period is from May 10 to September 11, 2014, once every 5 days before July 20, and once every 10 days after July 20. A total of 17 observations have been made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 2.1.2 Reed: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2 observation method Corn: select three sample plots, and select three corn plants that represent the average level of each sample plot for each observation, respectively weigh the fresh weight (aboveground biomass + underground biomass) and the corresponding dry weight (85 ℃ constant temperature drying), and calculate the biomass of unit area corn according to the plant spacing and row spacing; Reed: set two 0.5m × 0.5m quadrats, cut them in the same place, and weigh the fresh weight (stem and leaf) and dry weight (constant temperature drying at 85 ℃) of reed respectively. 2.3 observation instruments Balance (accuracy 0.01g), oven. 3 data storage All the observation data were recorded in the excel table first, and then stored in the excel table. At the same time, the data of corn planting structure was sorted out, including the plant spacing, row spacing, planting time, irrigation time, except for the parent time, harvesting time and other relevant information.
YU Wenping, GENG Liying, Li Yimeng, TAN Junlei, MA Mingguo
The dataset contains vegetation type in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI during 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Hierarchical classification is applied based on CASI data. According to various land types, pixel classifications is used for forest, grassland, bare land and building lands; in-situ observations and investigations are used for different crops. Dataset contains: land types, including maize, leek, poplar trees, cauliflower, bell pepper, potatoes, endive sprout, orchard, watermelon, kidney bean, pear orchard, shadow, and non-vegetation, except for 14 others which are not classified. Observation site: core experimental areas with 5*5 matrix structure in the middle reaches of the Heihe river basin Date: From 25 June in 2012 (UTC+8) on.
Zhang Miao
On 19 July 2012 (UTC+8), Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. The relative flight altitude is 1500 m (the elevation of 2700 m). Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm with the point cloud density 4 points per square meter. Based on the original Airborne LiDAR-DEM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
During the 2012 aerial remote sensing experiment conducted midstream, Li-Cor8100 was used to measure soil respiration every five days in the EC matrix area. Instrument: LI-Cor8100 Measuring Method: Soil respiration ring was made using PVC pipe with length of 10 cm. Before measuring soil respiration, soil respiration ring was inserted into the soil, 4 cm in soil and 6 cm above soil. Soil respiration measurement should be taken after standing for at least 24 hours science ring was inserted in soil. Sample measurement time is during 9-12 in the morning. Set of three replicates per plot. Marked according to EC site name. Data content: Data content includes header information, and once every five days repeated three times observations value and the average value. Measuring location: EC sites within the matrix core experiment area (No. EC01 to EC17), each plot set three repeat samples. For the superstation (EC15) plot set nine repeat samples. Measuring time: From 6 June to 20 August, 2012, once every five days for site EC01, EC03, EC05, EC10, EC11, EC12, EC13, EC14, and EC17; from 1 July to 20 August, 2012, once every five days for site EC02, EC04, EC06, EC07, EC08, EC09 and EC16. The time used in this dataset is in UTC+8 Time. Part of the observation points during the observation just irrigation, these times are not observable.
LI Yuan, SHI Weiyu, SONG Yi
On June 26, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5m intervals. Each line has 21 points (north-south direction) at 5m intervals. Three hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 440 points on the quadrat were obtained, and each point was observed twice, i.e. two times in each sampling point, one time inside the film (marked as a in the data record) and one time outside the film (marked as B in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked as B in the two data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: The data format of this data set is vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.
WANG Shuguo, MA Mingguo, LI Xin
This dataset includes two reference images. The first one is before the calibration and validation experiment and the second one is during the calibration and validation experiment. The first image was shoot and mosaicked by CCD camera on 8 November, 2011. It was mainly used to design the experiment in the middle stream. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. The second reference image is CASI image shoot on 29 June, 2012. This image is mainly used to crop structure mapping in the experiment area. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. Data format:GeoTIFF Projection:The 2000 national geodetic coordinate system
MA Mingguo
On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.
XIAO Qing, Wen Jianguang
On 19 August 2012 (UTC+8), Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
On August 2, 2012, airborne ground synchronous observation was carried out in plmr quadrats of Yingke oasis and huazhaizi desert. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern edge of Zhangye Oasis and anyangtan desert, on the west side of Zhangye Daman highway, and across the trunk canal of Longqu in the north and the south, which is divided into two parts. In the southwest, there is a 1 km × 1 km desert quadrat. Because the desert is relatively homogeneous, here 1 The soil moisture of 5 points (1 point and center point around each side, and several more points can be measured during walking along the road in the actual measurement process) is collected in KM quadrat. The four corner points are 600 m apart from each other except the diagonal direction. The southwest corner point is huazhaizi desert station, which is convenient to compare with the data of meteorological station. On the northeast side, a large sample with an area of 1.6km × 1.6km was selected to carry out synchronous observation on the underlying surface of oasis. The selection of quadrat is mainly based on the consideration of the representativeness of surface coverage, avoiding residential buildings and greenhouses as much as possible, crossing oasis farmland and some deserts in the south, accessibility, and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 11 splines (east-west distribution) were collected at the interval of 160 m in the east-west direction. Each line has 21 points (north-south direction) at the interval of 80 M. four hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 230 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. No synchronous vegetation sampling was carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.
WANG Shuguo, MA Mingguo, LI Xin
The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.
YU Wenping, WANG Zengyan, MA Mingguo
The dataset generated from the radiosonde observations in middle basin of Heihe River during 2012. The instrument type are RS92-SGP (Vaisala inc., Finland) or CF-06-A (Changfeng Micro-Electroinics, CHINA). Radiosondes were released during aerospace experiment, such as CASI/SAI, TASI, WIDAS sensors. Atmospheric parameters: pressure, temperature, relative humidity, wind speed and wind direction are measured or calculated at different altitude. This atmospheric parameter profiles can back up atmospheric correction in remote sensing. It can support meteorology research. Observation Site: 1. Wuxing Village: Latitude: 38°51′11.9″N,Longitude: 100°21′48.8″E,Altitude: 1563 m 2. Gaoya Hydrological Station Latitude: 39°8′7.2″N,Longitude: 100°23′59.0″E,Altitude: 1418 m 3. A’Rou Super Station Latitude: 38°03′17.9″N,Longitude: 100°27′28.1″E,Altitude: 2991 m Observation Instrument Type: RS92-SGP manufacture by Vaisala inc., Finland CF-06-A manufacture by Beijing Changfeng Micro-Electronics Technology Co., LTD, CHINA. Observation Time: Simultaneous observation time from 29 June, 2012 to 29 July, 2012 (UTC+8). Accessory data: Pressure, temperature, relative humidity, wind speed and wind direction profiles data.
TAN Junlei, MA Mingguo, Han Huibang, YU Wenping, Hu Ronghai, Zhao Jing, Wang Yan
The data set provided the cloudless Fractional Snow Cover area (FSC) time-series product basing on the MODIS data and covered the Heihe River Basin from January 2010 to December 2013. They also provide the high spatial (500 m) and temporal (1 day) resolution. Firstly, the end-member were automatically extracted by the fast autonomous spectral end-member determination (N-FINDR) maximizing volume iteration algorithm. Combining N-FINDR with the orthogonal subspace projection (OSP) approach, we propose an improved end-member extraction algorithm using a maximizing, volume-based iterative method. All the 6 end-members were extracted including snow, soil, water, bare land, vegetation, and cloud, respectively. Then, the 10-day spectral library time series based on prior knowledge of Heihe basin are built for 2009. The primary data were produced using the fully constrained least squares (FCLS) linear spectral mixture analysis method by the spectral library. Finally,the cubic spline interpolation algorithm were used to the eliminate the cloud pixels completely and obtain the data set. The data are validated by the fractional snow cover derived from Landsat imagery and the results indicate that the improved algorithm can obtain the end-member information accurately, and the retrieved fractional snow cover has better accuracy than the MODIS fractional snow-cover product (MOD10A1). So the data set can provide more accurate input for the hydrology and climate model.
HUANG Xiaodong, ZHANG Ying, TANG Zhiguang, LI Xin
The data set include crop leaf chlorophyll content observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the EC plots, the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop leaf chlorophyll content, a key biophysical parameter, was observed as model parameter or a priori knowledge for canopy radiative transfer model or eco-hydrological models. 2) Measuring instruments SPAD. 3) Measuring site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The wheat leaf chlorophyll content for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the EC site The maize leaf chlorophyll content at 14 EC site (EC-2,EC-3,EC-5,EC-6,EC-7,EC-8,EC-9, EC-10, EC-11, EC-12, EC-13, EC-14, EC-15, EC-16) are measured on 14, 21, 25 and 31 May, 7, 13, 23 and 28 June, 3, 13, 18 and 23 July, 3, 12 and 28 August. c. the Super Station The maize chlorophyll content at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. d. the Shiqiao sample site The maize chlorophyll content at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.
Xu Fengying, Wang Jing, Huang Yongsheng, LI Xin, MA Mingguo
On July 3, 2012, airborne ground synchronous observation was carried out in plmr sample belt near Linze station. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: According to the typical ground surface type represented by three points near Linze station and taking part of neutron tube observation into account, the three routes from northwest to southeast are designed, with an interval of 200 m, a design altitude of about 300 m and a plmr ground resolution of 100 m. According to the observation characteristics of the route and plmr, three observation transects are designed on both sides of the route, each of which is about 6 km long. From west to East are L1, L2 and L3 respectively. Among them, L1 and L2 are centered on the middle route, 80 m apart; L2 and L3 are 200 m apart. Four hydroprobe data acquisition systems (HDAS, ref. 2) were used to measure at the same time. Measurement content: About 4500 points on the sample belt were obtained, each point was observed twice, that is to say, in each sampling point, once in the film (marked as a in the data record) and once out of the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Note: the observation date coincides with the irrigation of large area of farmland in this area, which makes it difficult for the observer to move forward, the field block is difficult to enter, and the observation point position deviates from the preset point position. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
WANG Shuguo, MA Mingguo, LI Xin
The first dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 4 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The second dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 15 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The third dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 26 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The measurements were conducted at a sampling plot southeast to the Daman Superstation with an area of around 100 m × 100 m, which was dominantly planted with maize. Steven Hydro probes were used to collect soil moisture and other measurements with an interval of 5 m. For each sampling point, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within this sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, LAI, vegetation water content, canopy height, row distance and leaf chlorophyll content. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.
WANG Shuguo, LI Xin
This dataset includes the BRF observations of the corn in the Daman site (100.372° E, 38.855° N) on 29-6-2012) and the desert site around the airport (100.700° E, 38.762° N) acquired on 8-7-2012. Instruments: SVC-HR1024 from IRSA, reference board from IRSA, the multi-angular auto-observing shelf developed by BNU Measurement methods: we measure the BRF in the unit of observing plane, i.e. fix the view azimuth then change the view zenith angle to measure the target spectra, including along the principle plane and cross the principle plane at different sun angle. Besides, the planes along and cross the ridge of corn are also measured, specific planes like 0° , 90° away from the north are also observed in the desert. In each observing plane, view zenith angles from -60° to 60° with a interval of 10° are observed. The fiber optic probe with a view field of 25° is fixed at the multi-angular shelf at a height of 5 meters. The spectrum measured by the SVC-HR1024 is ranged from 350 nm-2500 nm. In each plane measurement , the spectral radiance of the reference board is measured first, then the target radiance of different view zenith angle is measured, finally the reference board radiance is measured again. Dataset contains the originally recorded data like the spectra (in sig format) and the log files (in txt format), and the processed data BRDF (in txt format and jpg format). The processed data in the format of txt, contains the observing geometries and corresponding reflectance spectra from 350 nm to 2500 nm. The processed data in the format of jpg, is a quick view of the BRF at 550 nm, 650 nm and 850 nm of each observing plane.
You Dongqin, Wang Heshun, Yang Jian, Hu Ronghai, XIAO Qing, Wen Jianguang, MA Mingguo
In July 19, 2012 (UTC+8), the airborne LIDAR data is acquired in the foci area in the Heihe,middle reaches, which can provide high spatial resolution (m) and high precision (20 cm) of the surface elevation information. Based on airborne LIDAR data processing, the land surface DEM, DSM and point cloud density map were generated. By subtracting DSM and DEM directly, a Vegetation height product in the middle reaches of the Heihe River Basin was obtained. The product overall accuracy is 88%.
XIAO Qing, Wen Jianguang
On 7 July 2012 (UTC+8), a CASI/SASI sensor boarded on the Y-12 aircraft was used to obtain the visible/near Infrared hyperspectral image, which is located in the observation experimental area. The relative flight altitude is 2000 meters, The wavelength of CASI and SASI is 380-1050 nm and 950-2450 nm, respectively. The spatial resolution of CASI and SASI is 1 m and 2.4 m, respectively. Through the ground sample points and atmospheric data, the data product are recorded in reflectance processed by geometric correction and atmospheric correction based on 6S model.
XIAO Qing, Wen Jianguang
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 3 July, 2012, located along the riverway of Heihe River in the middle reaches of the Heihe River Basin. The aircraft took off at 11:40 am (UTC+8) from Zhangye airport and landed at 14:10 pm, with the flight time of 2.5 hours. The flight was performed in the altitude of about 350 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 100 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 2 August, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 9:00 am (UTC+8) from Zhangye airport and landed at 14:00 pm, with the flight time of 5 hours. The flight was performed in the altitude of about 2300 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 700 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
A land surface temperature and upward/downward shortwave radiation observation system was set up on the roof, which locate on the edge of No.4 eddy covariance system (EC4) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). This observation site can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large and homogeneous adobe roof in Shiqiao Village, Xiaoman Town, Zhangye City. Land surface of observation site is relatively flat and uniform, and also not tall trees around. It’s about 20 meters away from southwest No.4 eddy covariance system (EC4) observation points. The coordinates of this site: 38°52′38.50″ N,100°21′27.00″ E。 Observation Instrument: Observation system is composed of a SI-111 infrared radiometer (Campbell, USA) installed vertically downward, two CMP3 pyranometer (Kipp&Zonen, Netherlands) one upward, another downward. Observation height is 1.0 m, data logging by a Campbell CR850 logger. Sensor orientation: Observation mounting arm has 3 m long, parallel to roof edge, azimuth angle: 156° (East by south 66°) Observation Time: This site operates from 23 June, 2012 to 20 September, 2012. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Land surface (adobe roof) temperature, downward/upward total solar radiation, surface albedo. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: Rs_downwell, downward shortwave radiation (W/m^2); Rs_upwell, upward (reflect) shortwave radiation (W/m^2); albedo, calculate by Rs_upwell/ Rs_downwell. SBT_C, body temperature of SI-111 sensor (℃); Target_C, Target of surface temperature (℃). Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
MA Mingguo
On 1 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the upper reaches of the Heihe River Basin. WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.
XIAO Qing, Wen Jianguang
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 30 June, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 13:10 pm (UTC+8) from Zhangye airport and landed at 18:40 pm, with the flight time of 5.5 hours. The flight was performed in the altitude of about 2500 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 750 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 4 July, 2012, located along the riverway of Heihe River in the middle reaches of the Heihe River Basin. The aircraft took off at 10:50 am (UTC+8) from Zhangye airport and landed at 14:50 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 1000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 300 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
This mesurement aims to obtain the wind direction, wind speed, and disturbance characteristics of the lower atmosphere. The observation period is from 25 June to 17 Septemper, 2012 (UTC+8). Measurement instruments: Germany Scintec MFAS Flat Array Sodar Measurement position: 60 meters northwest of Daman Super Station Measurement period: 25 June to 17 Septemper, 2012. 24 hours of uninterrupted obeservation. Automatically Recorded Data every half hour. Data contents: We obtain one data file every day. The data contents include observation height, wind speed, wind direction, wind speed in east – west direction, wind speed in south – north direction, vertical wind speed, standard deviation of vertical wind speed, backscatter intensity. Remarks: The prectical obsevation height changes with the air water vapor content. Our obsevation point is located in the arid region. The air water vapor content is very low. Therefore the maximum obsevation height is about 300 meters. When it rains or very windy and dusty, the backscatter intensity is very high. Then the data would be miss or only has the vertical wind speed and backscatter intensity.
Wan Bingcheng
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 5 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 10:50 am (UTC+8) from Zhangye airport and landed at 12:20 pm, with the flight time of 1.5 hours. The flight was performed in the altitude of about 2000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 600 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 17 to 18, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 17-18, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 3.6m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 15-16, 2013 in the farmland of jiushe, Kangning, Zhangye City, Gansu Province. The surface temperature includes the soil temperature data observed by the temperature sensor at the soil depth of 0 cm, 1 cm, 3 cm, 5 cm and 10 cm. The time frequency of conventional observation of soil temperature is 5 minutes. Data details: 1. Time: November 15-16, 2013 2. data: Bright temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz v-polarization and H-polarization data (10.65ghz band instrument damaged) Soil temperature: use the sensor installed on dt85 to measure the soil temperature of 0cm, 1cm, 3cm, 5cm and 10cm Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 4.8m 4. Data format:. Xls
ZHAO Shaojie, KOU Xiaokang, YE Qinyu, MA Mingguo
On July 26, 2012, the airborne ground synchronous observation was carried out in the plmr quadrat in the dense observation area of Daman. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the matrix of the dense observation area of Daman, and the detailed plan with an area of 3.0KM × 2.4km is selected to carry out synchronous observation on the underlying surface of oasis. The selection of the sample is mainly based on the representativeness of the surface coverage, accessibility and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 5 splines (east-west distribution) were collected at an interval of 450 m in the east-west direction. Each line has 31 points (north-south direction) at an interval of 100 m, and 5 hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 150 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.
WANG Shuguo, MA Mingguo, LI Xin
Er’ba Reservoir surface temperature of water body can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This site is 14 KM away from East of ZhangYe city. It’s located in Er’ba village, JianTan town, ZhangYe city. The coordinates of this site: 38°54′57.14" N, 100°36′57.39" E. Observation Instrument: The observation system consists of two SI-111 infrared radiometers (Campbell, USA) and two 109SS temperature probes (Campbell, USA). Two SI-111 sensors, one installed vertically downward to water surface, another face to south of zenith angle 35°. Temperature probes float under water surface at 0 cm. SI-111 sensor installed at 3.0 m height, 3.4 m away from water edge. Observation Time: This site operates from 27 May, 2012 to 27 September, 2012. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Water surface infrared temperature (by SI-111), sky infrared temperature (by SI-111), water surface temperature (by 109ss) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: TarT_Atm, Sky infrared temperature (℃) @ facing south of zenith angle 35°; SBT_Atm, body temperature of SI-111 sensor (℃) measured sky; TarT_Sur, water surface infrared temperature @ 3.0 m height; SBT_Sur, body temperature of SI-111 sensor (℃) measured water surface; WaterT_1, WaterT_2, water surface temperature (℃) measured by 109SS temperature probes. Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
MA Mingguo
On July 10, 2012, the airborne flight and ground observation was synchronously carried out in the PLMR quadrat of Yingke Oasis and the Huazhaizi Desert. PLMR (Polarimetric L-band Multibeam Radiometer) is a dual-polarized (H/V) L-band microwave radiometer with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, and a resolution of 1 km (relative flight height of 3 km).The radiometer has 6 beams to observe synchronously, and the incident angles are ±7º,±21.5º,±38.5º, and the sensitivity is less than 1K. The flight observation mainly covers the artificial oasis eco-hydrological test area in the middle reaches. This ground-synchronized data set provides a basic ground dataset for developing and validating passive microwave remote sensing inversion soil moisture algorithms. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern margin of Zhangye Oasis and Anyang beach desert, the west side of Zhang (Zhangye)-Da (Daman) highway. It is divided into two parts by the main canal of the Dragon Canal from North to South. The Southwest area is a desert quadrat with the size of 1 km×1 km. The desert is relatively homogeneous, so soil moisture of 5 points in the 1 km quadrat are collected (1 point of each corner and the center point, in the actual measurement process, several extra points can be measured along the road). The four corner points are 600 meters away from each other,except the diagonal direction. And the southwest corner point is Huazhaizi Desert Station, for the convenience of comparison with weather station data. On the northeast side, a large size quadrat of 6 km×1.6 km is selected for simultaneous observation of the oasis underlying surface.In order to obtain the brightness temperature comparison with the PLMR observation, the quadrat was chose based on the following factors :surface coverage representative, avoiding the residential and greenhouses, crossing the oasis farmland and part of the Southern desert, accessibility, and observation time(road consumption). Taking the resolution of PLMR observations into consideration, in the synchronous observation, 11 sampling lines (East-West distribution) were collected with an interval of 160 meters from the East to the West. Each line from the North to the South was separated by 21 points with an interval of 80 meters. And 4 Hydraprobe Data Acquisition System (HDAS, Reference 2) were used to measure simultaneously. Measurement contents: About 230 points of the quadrat were collected, 2 observations were performed on each point, that is, 2 observations were performed on each sampling point of the film mulched corn field, 1 inside the film (marked as a in the data record), 1 outside the film (marked as b in the data record). Since the HDAS system useed the POGO portable soil sensor, the soil temperature, soil moisture (volumetric water content), loss tangent, soil electrical conductivity, soil complex dielectric real part and imaginary part were obtained by observation. No special simultaneous sampling of vegetation was carried out on the same day. Data: The data set includes two parts: soil moisture observation and vegetation observation. The former saves the data as a vector file, the spatial position is the position of each sampling point (WGS84+UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.
WANG Shuguo, LI Xin
On 30 June 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km), Linze region and Heihe riverway. The relative flight altitude is 2500 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction. Land surface temperature (LST) data was retrieved by temperature/emissivity separation algorithm.
XIAO Qing, Wen Jianguang
On 2 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes an CCD cameras with spatial resolution 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with spatial resolution 6.3 m. The CCD camera data production are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.
XIAO Qing, Wen Jianguang
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 10 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 10:30 am (UTC+8) from Zhangye airport and landed at 15:30 pm, with the flight time of 5 hours. The flight was performed in the altitude of about 2500 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 750 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
On 29 June 2012 (UTC+8), a CASI/SASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 3500 meters(an elevation of 3500 meters), The wavelength of CASI and SASI is 380-1050 nm and 950-2450 nm, respectively. The spatial resolution of CASI and SASI is 1 m and 2.4 m, respectively. Through the ground sample points and atmospheric data, the data are recorded in reflectance processed by geometric correction and atmospheric correction based on 6S model.
XIAO Qing, Wen Jianguang
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 26 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 9:10 am (UTC+8) from Zhangye airport and landed at 13:40 pm, with the flight time of 4.5 hours. The flight was performed in the altitude of about 2300 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 700 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time and other details On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded. On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region. On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation. 3. Data storage All the observation data were stored in excel.
GENG Liying, Jia Shuzhen, WANG Haibo, PENG Li, Dong Cunhui
Data content: precipitation data of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: from the new generation of global precipitation measurement (GPM) of NASA (version 06, global precipitation observation program), the daily rainfall can be obtained by adding the three-hour rainfall data, and then the eight day rainfall can be obtained. Data quality: the spatial resolution is 0.1 ° x 0.1 ° and the temporal resolution is 8 days. The value of each pixel is the sum of rainfall in 8 days. Data application results: under the background of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics.
XIAO Qing, Wen Jianguang
On 4 July 2012 (UTC+8), a TASI sensor boarded on the Y-12 aircraft was used to obtain the thermal-infrared hyperspectral image, which is located in the observation experimental area, Linze region and Heihe riverway. The relative flight altitude is 1000 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction. Land surface temperature (LST) data was retrieved by temperature/emissivity separation algorithm.
XIAO Qing, Wen Jianguang
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 7 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 13:40 pm (UTC+8) from Zhangye airport and landed at 17:40 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 2000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 600 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
CHE Tao, Gao Ying, LI Xin
On 26 July 2012, a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes an CCD cameras with spatial resolution 0.2 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1 m), and a thermal image camera with spatial resolution 4.8 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification. The multispectral camera data are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data are recorded in radiation brightness temperature processed by atmospheric and geometric correction.
XIAO Qing, Wen Jianguang
This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the flux observation matrix from 25 June to 26 September, 2012. The site (100.44640° E, 38.97514° N) was located in a wetland surface, which is near Zhangye city, Gansu Province. The elevation is 1460.00 m. The EC was installed at a height of 5.2 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
Trough the select tasking, we obtained the WorldView-2 stereo image data in Dayekou Basin production in mid-May 2012. In the same year from July to August, 27 GPS ground control points (GCP) and checkpoints were measured based on the watershed differential GPS control network. Based on the full-field GCPs, the rational polynomial coefficients (RPC) files of WorldView-2 images were corrected in the digital photogrammetry software system. In the stereo model, 60 high-precision tie points evenly distributed were got through image matching technology, and the 1-m and 2-m resolution digital elevation model (DEM) were rapid extracted. Moreover, the DEM was edited in some key areas, such as the shady forest coverage and Dayekou reservoir. The terrain feature points and line data were added to improve the accuracy of the results in large variation of terrain feature. Check points were composed of GPS points and model confidential points, which used for quantitative validation. And they root mean square errors RMSE were 1.9 meters and 1.2 meters respectively, which achieve the requirements of two degree accuracy of 2.0 m at a scale of 1:2000 in high mountains.
Zhang Yanli, MA Mingguo
Trough the select tasking, we obtained the WorldView-2 stereo image data in Dayekou Watershed production in mid-May 2012. In the same year from July to August, 27 GPS ground control points (GCP) and checkpoints were measured based on the watershed differential GPS control network. Based on the full-field GCPs, the rational polynomial coefficients (RPC) files of WorldView-2 images were corrected in the digital photogrammetry software system. In the stereo model, 60 high-precision tie points evenly distributed were got through image matching technology, and the 1-m and 2-m resolution digital elevation model (DEM) were rapid extracted. Based on collinearity equations, images at nadir were corrected to adjust relief displacements and geometric errors, and the 0.5-m resolution digital orthorectified images DOM were obtained with the principle of digital differential rectification in Dayekou Basin.
Zhang Yanli, MA Mingguo
The dataset include the planting structure and area information of major crops in 11 districts and counties of the Heihe River Basin from 2000 to 2012 (grain, wheat, corn, potato, soybean, cotton, oil, vegetables, etc.)
DENG XiangZheng
We produced surface photosynthetic effective radiation (PAR), solar radiation (SSR) and net radiation (NR) products with 1KM resolution in the heihe basin in 2012.The temporal resolution ranges from instantaneous to hourly and daily.Day-by-day ancillary data were also produced, including aerosol optical thickness, moisture content, NDVI, snow cover, and surface albedo.Among them, PAR and SSR use the method of lookup table to directly invert by combining the stationary weather satellite and polar orbit satellite MODIS product.NR was calculated by analyzing the relationship between net short-wave and net surface radiation.Hourly instantaneous products are weighted by average and integral to obtain hourly and daily cumulative products.
HUANG Guanghui
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn