Nine and six evaporation barrels were arranged in the 2700m Qinghai spruce forest and the shady grassland outside the forest in the Pailugou watershed of the Qilian Mountains. Specifications are 20cm in diameter and 80cm in height. The measurement date is from June 2012 to September 2012. Daily measurement is performed and the daily precipitation is recorded. The unit is mm.
HE Zhibin
The micro-meteorological field is located in the grassland of Pailugou watershed of Qilian Mountain with an altitude of 2700m. The data were recorded from January 2011 to July 2012, and the time interval was half an hour, including 1.5m humidity, 3m temperature, 2.8m air pressure, 1.3m rainfall, 2.2m wind speed, 3.1m total radiation, the units are %, °C, Pa, m, m/s, W•M-2.
HE Zhibin
The dataset investigated the growth status of plants and leaf morphological indexes of single and conjoined red sand and pearl in the middle and lower reaches of heihe river basin in 2013. The growth indexes were crown width, plant height, and biomass of fine roots and thick roots.Leaf shape indicators are: length, width, thickness, and leaf area, volume, etc.The experimental observation indexes are: leaf nitrogen content, water potential, gas exchange data, chlorophyll fluorescence data. Data include: field observation data and explanatory documents.
SU Peixi
The data of soil moisture in the Pailougou include the grassland on the shady slope of 2700m above sea level and the Picea crassifolia forest of 2800m above sea level. The soil water content monitoring system EM50 was used to measure the water content in five soil layers, 10cm, 20cm, 30cm, 40cm and 60cm respectively. The in-forest survey period is from June 2012 to September 2012, and there are also data for June 2013. The meadows were measured from June 2013 to October 2013. The measurement results are all volume water content in%.
HE Zhibin
The year-end ecological investigation was conducted in the late September and early October when plants stopped growing. There are 8 investigation and observation fields, they are: piedmont desert, piedmont Gobi, desert in the middle, Gobi in the middle reaches, desert in the middle reaches, downstream desert, downstream Gobi, and downstream desert, the size of each filed is 40m×40m. Three large quadrats of 20m×20m were selected in each observation field, named S1, S2, and S3, to conduce the regular shrub investigation; four small quadrats were selected from each large quadrat with a size of 5m×5m, named A, B, C, D, to conduct herbal investigation.
SU Peixi
In July and mid August 2012, plant species: Caragana. Using Li-6400 portable photosynthesis system (li-cor, USA) and li-3100 leaf area meter, the photosynthetic physiological characteristics of desert plants were observed. The symbols in the observation data have the following meanings: Obs, number of observations;Photo, net photosynthetic rate, moles of CO2 times m minus 2 times s minus 1; Cond, stomatal conductance, mol H2O•m -- 2•s -- 1;Ci, intercellular CO2 concentration, moles of CO2 times mol-1; Trmmol, transpiration rate, mmol H2O•m -- 2•s -- 1;Vpdl, water vapor pressure deficit, kPa; Area, leaf Area, cm2;Tair, atmospheric temperature, ℃; Tleaf, leaf surface temperature, ℃;CO2R, CO2 concentration in the reference chamber, moles of CO2•mol-1; CO2S, sample chamber CO2 concentration, moles of CO2•mol-1;H2OR, water in the reference chamber, mmol H2O•mol-1; H2OS, sample chamber moisture, mmol H2O•mol-1;PARo, photon flux density, mole •m -- 2•s -- 1; Rh-r, reference room air relative humidity, %;Rh-s, relative humidity of air in sample room, %; PARi, photosynthetic effective radiation, moles •m -- 2•s -- 1;Press, atmospheric pressure, kPa; Others are the state parameters of the instrument at the time of measurement.
SU Peixi
A small lysimeter was made to simulate the natural conditions and select typical desert plants as the objects to study the water consumption of drought stress treatment. Repeat 3 times for each plant. In 2012, the soil water content was kept at (20 ± 5)% of the field water capacity, and experiments on physiological water demand and water consumption were carried out under stress. In 2013, the soil water content was kept at (10 ± 3)% of the field water capacity, and further experiments on water consumption and water consumption law were carried out under drought stress.
SU Peixi
As determined in mid-august 2013, planting species: bubbly spines (different habitats are mid-range intermountain lowland and gobi), red sand (different habitats are mid-range gobi and downstream gobi). Using the brother company of LI - 6400 Portable Photosynthesis System (Portable Photosynthesis System, LI - COR, USA) and LI - 3100 leaf area meter, etc., to the desert plant photosynthetic physiological characteristics were observed. The symbolic meaning of the observed data is as follows: Obs,observation frequency ; Photo ,net photosynthetic rate,μmol CO2•m–2•s–1; Cond stomatal conductance,mol H2O•m–2•s–1 ; Ci, Intercellular CO2 concentration, μmol CO2•mol-1; Trmmol,transpiration rate,mmol H2O•m–2•s–1; Vpdl,Vapor pressure deficit,kPa; Area,leaf area,cm2; Tair,free air temperature ,℃; Tleaf,Leaf temperature,℃; CO2R,Reference chamber CO2 concentration,μmol CO2•mol-1; CO2S,Sample chamber CO2 concentration,μmol CO2•mol-1; H2OR,Reference chamber moisture,mmol H2O•mol-1; H2OS,Sample chamber moisture,mmol H2O•mol-1; PARo,photon flux density,μmol•m–2•s–1; RH-R,Reference room air relative humidity,%; RH-S,Relative humidity of air in sample room,%; PARi,Photosynthetic effective radiation,μmol•m–2•s–1; Press,barometric pressure,kPa; Others are the state parameters of the instrument at the time of measurement.
SU Peixi
In the middle of August 2013, photosynthesis of population was measured, and plant species: red sand. The group photosynthesis measurement system consists of li-8100 closed-circuit soil carbon flux automatic measurement system (li-cor, USA) and assimilation box designed and manufactured by Beijing ligotai science and Technology Co., Ltd. li-8100 is an instrument produced by li-cor company of USA for soil carbon flux measurement. The concentration of CO2 and H2O is measured by infrared gas analyzer. The length, width and height of assimilation boxes were all 50 cm. The assimilator is controlled by li-8100. After the measurement parameters are set, the instrument can run automatically.
SU Peixi
On the basis of physiological and biochemical analysis of photosynthetic organs (leaves or assimilating branches) of typical desert plants in heihe river basin collected in mid-july 2011, some photosynthetic organs of desert plants were collected in mid-july 2012 and put into a liquid nitrogen tank and brought back to the laboratory for determination. Physiological analysis indexes mainly include: soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.
SU Peixi
At the end of September and the beginning of October, 2013, desert plants in typical areas of heihe basin stopped their growth period to conduct year-end ecological survey. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.
SU Peixi
This dataset includes eight scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd hh:mm) 2012-05-24, 2012-06-04, 2012-06-26, 2012-07-07, 2012-07-29, 2012-08-09, 2012-08-14, 2012-08-25. The data were all acquired around 19:00 (BJT) at StripMap mode with product level of MGD. Within them, the former six images are of HH/VV polarization with low incidence angle (22-24°), while the later two images acquired on 2012-08-14 and 2012-08-25 are of VV/VH polarization with higher incidence angle (39-40°). TerraSAR-X dataset was acquired from German Space Agency (DLR) through the general proposal of “Estimation of eco-hydrological variables using TerraSAR-X data in the Heihe River Basin, China” (project ID: HYD2096).
German Space Agency (DLR)
In this dataset samples were obtained from groundwater outcrop points and surface water points through the field hydrogeological survey of mabongshan, and the analysis data of deuterium - oxygen - 18 and tritium were obtained by sending them to the laboratory with relevant qualification. This dataset can obtain the isotopic information of groundwater and surface water in the research area of the project, and provide data reference for the water circulation law in the research area.
GUO Yonghai
This data set contains the eddy related data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. For more information, see the documentation that came with the data.
Zhangye city meteorological bureau
This dataset includes seven scenes; two scenes cover the Dayekou catchment on (yy-mm-dd) 2012-08-19 and 2012-08-28, one scene covers the airport desert experimental site on 2012-06-29, three scenes cover the Daman foci experimental area on 2012-06-21, 2012-07-10 and 2012-08-27, and one scene covers the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. The data were all acquired around 9:00 (BJT) of full swath mode with data product of Level 1A. PROBA CHRIS dataset was acquired through the European Space Agency (ESA)-Ministry of Science and Technology of China (MOST) Cooperative Dragon 2 (project ID: 5322) and Dragon 3 (project ID: 10649) Programme.
ESA-MOST cooperative Dragon programme(No. 5322,10649)
The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jun. 19, 2008. GPR observations were also carried out in one sampling strip. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT. Simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, and the mean soil temperature from 0-5cm by the probe thermometer. Those provide reliable ground data for retrieval and validation of the surface temperature and evapotranspiration from remote sensing approaches. Four files were included, ASAR data, No. 1, 2 and 3 quadrates data.
CAO Yongpan, GE Chunmei, HAN Xujun,
The dataset of fresh snow properties observations was obtained at the temporary sampling plot in the Qilian county on Mar. 20, 2008. Those provide reliable data for retrieval of snow parameters from remote sensing approaches. Observation items included: (1) Snow parameters such as snow depth, snow grain size by the handheld microscope, and snow density by the snow shovel (2) Fresh snow albedo by the total radiometer (3) Fresh snow spectrum by ASD Two files including raw data and preprocessed data were archived.
GE Chunmei, SHU Lele, WANG Xufeng, XU Zhen, ZHU Shijie, LIU Yan, ZHANG Pu
The dataset of ground truth measurements for snow synchronizing with Envisat ASAR was obtained in the Binggou watershed foci experimental area on Mar. 15, 2008. The Envisat ASAR data were acquired in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:34 BJT. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-B, BG-D, BG-E and BG-F; (2) Snow parameters including the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case, snow depth by the ruler, and the snow surface temperature synchronizing with ASAR in BG-H, BG-D, BG-E and BG-F; (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) synchronizing with ASAR in BG-H15; the major and minor axis and shape of the snow layer grain through the self-made snow sieve. Two files including raw data and the preprocessed data were archived.
BAI Yanfen, BAI Yunjie, GE Chunmei, HAO Xiaohua, LI Hongyi, LIANG Ji, SHU Lele, WANG Xufeng, XU Zhen, MA Mingguo, QU Wei, REN Jie, CHANG Cun, DOU Yan, MA Zhongguo, LIU Yan, ZHANG Pu
The dataset of spectral reflectance observations was obtained by ASD (Analytical Sepctral Devices) in the Yingke oasis and Huazhaizi desert steppe foci experimental areas. Reflectance was calculated based on the equation R = (DN1/DN0)×R0, DN1 indicating DN of the targets, R0 and DN0 the reflectance and DN of the grey board. The reflectance spectra of maize and wheat canopy, the component leaf of the maize and BRDF in Yingke oasis maize field, Yingke oasis wheat field, Huazhaizi desert maize field, the transect spectrum in Huazhaizi desert No. 1 and 2 plots and Linze and Biandukou foci experimental area were measured on May 20, 24, 25, 28 and 30, Jun. 1, 4, 9, 14, 16, 18, 20, 22, 23, 24, 26, 29 and 30, Jul. 1, 4, 5, 6, 7, 9 and 11, 2008. Four ASD devices were used, from Peking University (350-2500nm), Institute of Remote Sensing Applications (350-2500nm), Beijing Academy of Agriculture and Forestry Sciences (350-1065nm) and BNU respectively. The reference boards were 40%, 50% and 99%. The above spectral reflectance dataset was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II and various spaceborne sensors. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format.
CHEN Ling, REN Huazhong, WANG Haoxing, XIAO Yueting, YAN Guangkuo, ZHOU Hongmin, GE Yingchun, LI Xin, SHU Lele, GUANG Jie, LIU Sihan, SU Gaoli, XIA Chuanfu, Wen Jianguang, ZHANG Yang, ZHOU Chunyan, FAN Wenjie, TAO Xin, YAN Binyan, YAO Yanjuan, YANG Guijun, CHENG Zhanhui, Liu Liangyun, YANG Tianfu
The dataset of runoff plot observations was obtained in the Binggou watershed foci experimental area from Jun. 19 to Oct. 17, 2008. The runoff plot (38°03′, 100°13′, 3472m, with a slope of 20.16°) was 10m long, 5m wide and 80cm deep, with soil depth about 50cm and sandy clay and gravels beneath (50-80cm). The main vegetation type is scrub (about 20cm high) and grass (about 3cm high). Observation items included the surface flow, interflow (80cm down the land surface), and precipitation at a fixed point at the right of the runoff plot. One subfolder and two data files (directions on data observations and raw data) were archived.
LI Hongyi, LI Zhe, BAI Yunjie, XIN Bingjie
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn