The dataset of diurnal FPAR change observations was obtained in the Yingke oasis foci experimental areas. Observation items included: (1) Maize canopy reflectance spectra by ASD and 50% grey board, leaf SPAD by the chlorophyll meter and leaf photosynthesis by LI-6400 in Yingke oasis maize field on Jul. 5, 2008 (fixed point observations from 10:00-20:00 at intervals of one hour, and half an hour from 16:00) Besides, Photo: photosynthetic rate (µmol CO2 m-2 s-1), Cond: stomatal conductance (mol H2O m-2 s-1), Ci: intercellular CO2 viscosity (µmol CO2 mol-1), Trmmol: transpiration rate (mmol H2O m-2 s-1), VpdL: vapor pressure deficiency of leaves (kPa), Tleaf: leaf temperature (°C), ParIn_µm: active radiation of interior photosynthesis (µmol m-2 s-1), and ParOutµm: active radiation of outdoor photosynthesis (µmol m-2 s-1) were all archived. (2) Maize canopy reflectance spectra, leaf photosynthesis and diurnal FPAR change by ASD (Institute of Remote Sensing Applications), 50% grey board (Institute of Remote Sensing Applications), LI-6400 (Institute of Remote Sensing Applications) and SUNSCAN (Beijing academy of Agriculture and Forestry Sciences). Based on calibration lamp data (serial number: 64831), radiance spectrum on Jul. 9 by 1050 spectrometer (Beijing academy of Agriculture and Forestry Sciences) and 50% grey board and 99% white board calibration data, the spectrum data were preprocessed. Calibration was undertaken in accordance with the following precedures: a) The original DN was converted into radiance and further into readable EXCEL format by the spectrometer-matched calibration lamp data and ASD. b) Solar radiance was got by 99% white board radiance. solar radiance=the reference board radiance/the reference board reflectance. c) Spectrum from Agriculture and Forestry Sciences was sampled at an interval of 1.438nm, which was made into data at 1nm intervals by segmentation interpolation. d) Based on b=16.087a (where a is radiance before fitting and b after fitting), radiance data got by 68731 spectrograph were processed. The original maize leaf photosynthesis data (by LI-6400) were introduced into EXCEL format, diurnal changes of each leaf were archived as one single unit according to leaf classification. Maize FPAR (the fraction of photosynthetically active radiation) was got by FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR= FPAR×canopy PAR. The unit for PAR was µmol m-2 s-1. The data included number (the whole leaf), observation time (hh:mm:ss), upper light (µmol m-2 s-1), upper reflectivity (µmol m-2 s-1), lower light (µmol m-2 s-1), lower reflectivity (µmol m-2 s-1) and Spread: variation coefficients of the probe optical intensity.
WANG Dacheng, YANG Guijun, CHENG Zhanhui, Liu Liangyun
Eo-1 (Earth Observing Mission) is a new Earth Observing satellite developed by NASA to replace Landsat7 in the 21st century. It was launched on November 21, 2000.The orbit of eo-1 satellite is basically the same as that of Landsat7, which is a solar synchronous orbit with an orbital altitude of 705km and an inclination Angle of 98.7°, which is 1min less than that of Landsat7 and crosses the equator.On board of EO 1 3 kinds of sensors, namely, the Advanced Land Imager (ALI (the Advanced Land Imager), atmospheric correction instrument AC (Atmosp heric Corrector) and compose a specular as spectrometer (Hyperion), Hyperion sensor is first spaceborne hyperspectral mapping measurement instrument, the hyperspectral data a total of 242 bands, spectral range is 400 ~ 2500 nm, spectral resolution up to 10 nm, ground resolution of 30 m. Currently, there are 6 scenes of eo-1 Hyperion data in heihe river basin.The coverage and acquisition time were: 4 scenes in the encrypted observation area of zhangye urban area + yingke oasis encrypted observation area (2007-09-10, 2008-05-12, 2008-05-20, 2008-07-15).Two scenes of the iceditch watershed observation area were encrypted, the time was 2008-03-17, 2008-03-22, respectively. Product grade is L1 without geometric correction. The eo-1 Hyperion remote sensing data set of heihe integrated remote sensing joint experiment was acquired by researcher wang jian and Beijing normal university through purchase. (note: "+" represents simultaneous coverage)
Institute of Remote Sensing and Digital earth, Chinese Academy of Sciences
The spot satellite series in France consists of five stars, of which spot 5 is the best. It was launched in May 2002, with a height of 830km, an orbit inclination of 98.7 degrees, and a sun synchronous quasi regression orbit, with a regression period of 26 days. Linear array sensor (CCD) and push scan scanning technology were used for imaging. SPOT5 satellite carries two high-resolution geometric imagers (HRG), one high-resolution Stereo Imager (HRS) and one wide field vegetation detector (VGT). It has five working bands, multi spectral band spatial resolution is 10m (short wave infrared spatial resolution is 20m), panchromatic band spatial resolution is 2.5m. At present, there are three spots of SPOT5 data in Heihe River Basin. The coverage and acquisition time are respectively: 1 scene in Linze area, including multispectral image with resolution of 10m and panchromatic image with resolution of 2.5m, with time of 2008-07-04; 1 scene in Zhangye City, with resolution of 2.5m, with time of 2008-03-29; 1 scene of multispectral data with resolution of 10m, with time of 2008-08-10. The product level is L1, and the product has undergone rough geometric correction. SPOT5 image is mainly used as the base map of geometric precision correction in Heihe experiment. The spot 5 remote sensing data set of Heihe comprehensive remote sensing joint experiment was purchased by Beijing Normal University.
Institute of Remote Sensing and Digital earth, Chinese Academy of Sciences
The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.
ZHAO Chuanyan, MA Wenying
In August 2011 to October, 2012 in gansu province during may to August mazong mountain region field hydrogeological investigation, for each of groundwater, surface water outcropping points, according to the requirements of sampling, collecting water samples of 500 ml, sealed bottle, tag sampling time, location, number, send relevant qualification of laboratory tests, groundwater, surface water chemical analysis testing data obtained.Cations: Na+,K+,Mg2+,Ca2+, PH;Anions: F-,Cl-,NO3-,SO42-,HCO3-,CO32-;Trace elements, etc.In order to understand the chemical distribution of surface water and groundwater in the ma mane shan research area.
GUO Yonghai
This data includes experimental data of grassland interception control and observation data of maximum water holding capacity of grassland. The maximum water holding capacity experiment was carried out in 2011. The main vegetation types selected are Carex, Polygonum viviparum, Plantago asiatica and Potentilla chinensis. The maximum water holding capacity experiment was carried out on each type of samples and the samples were photographed. The specific data obtained are shown in the document. The grassland canopy interception was carried out in the growing season of 2012, and was completed by artificial rainfall control experiment. At the end of the growing season, the main types of grassland in the basin were sampled according to grazing and grazing ban. During artificial rainfall, rainfall and penetrating rainfall are recorded every 1min. Finally, the grassland canopy interception is calculated by the difference between rainfall and penetrating rainfall.
ZHAO Chuanyan, MA Wenying
The data are soil moisture data of tianlaochi watershed in Qilian Mountain. The TDR probes of soil moisture in the whole watershed were buried on July, 19-august 23, 2013. The positions of these probes can represent the whole tianlaochi watershed. The four altitudes of Picea forest slope, shrub slope, Sabina forest slope and steppe were mainly sampled. The first observation will be carried out on July 19, with an interval of one week. If there is rainfall time, the observation will be carried out on the next day. At the last time of observation, soil samples were taken from all sampling points, and soil mass moisture content was measured in the laboratory, aiming to correct the data observed by TDR probe.
MA Wenying, ZHAO Chuanyan
This data set includes the information of 21 conventional meteorological observation stations in Heihe River Basin and its surrounding areas, of which Wutonggou and Quixote stations have been cancelled in the 1980s, and other stations have operated since the establishment of the station. Station name, longitude and latitude 1. Mazong mountain 97.1097 41.5104 2. Yumen town 97.5530 39.8364 3. Wutonggou 98.3248 40.4697 4. Jiuquan 98.4975 39.7036 5. Jinta 98.9058 39.9988 6. Dingxin 99.5117 40.3080 7. Gaotai 99.7907 39.3623 8. Linze 100.165 39.1385 9. Sunan 99.6178 38.8399 10. Yeniugou 99.5830 38.4167 11. Tole 98.0147 39.0327 12. Ejina Banner 101.088 41.9351 13. Guaizi Lake 102.283 41.3662 14. Zhangye 100.460 38.9124 15. Shandan 101.083 38.7746 16. Folk music 100.826 38.4376 17. Alxa Right Banner 101.429 39.1407 18. Yongchang 101.578 38.1771 19. Qilian 100.238 38.1929 20. Gangcha 100.111 37.2478 21. Menyuan 101.379 37.2513 22. Gekkot 99.7063 41.9183 23. Jiayuguan 98.2241 39.7975
National Meteorological Information Center
This data is soil evapotranspiration data of subalpine grassland in tianlaochi small watershed of Qilian Mountain. Lysimeter was used to observe soil evapotranspiration and provide basic data for the development of watershed evapotranspiration model. Six repeated experiments were conducted to observe the soil evapotranspiration of subalpine grassland during the whole growing season. At 8:00 and 20:00 every day, use an electronic scale with an accuracy of 1G to weigh the inner barrel. In case of rainfall, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage water in the leakage barrel at the same time. Observation instrument: 1) standard 20 cm diameter rain gauge. 2) Lysimeter was made by ourselves (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy 1g) is used to observe the weight change of lysimeter.
MA Wenying, ZHAO Chuanyan
Leaf area index (LAI), as a structural parameter of vegetation canopy, is an important input parameter for many inversion models such as energy and biomass inversion model. Firstly, vegetation points and ground points are separated in Terrasolid software. Then the transmittance of laser points is calculated, and the transmittance is the proportion of ground points to all points. After laser pulse hits the canopy, some energy passes through the voids between branches and leaves and continues to move forward until the energy is blocked, so some laser points will finally reach the ground. In this study, the ratio of the energy passing through the avoids to the energy of the canopy is used as the Laser Penetration Index (LPI). The LPI of each sample point at each scale in the study area was calculated.
ZHAO Chuanyan, MA Wenying
The content is 32 rainfall interception data of Picea crassifolia forest from May 24 to September 3, 2013. The sample plot is set in Qinghai Spruce Forest with an altitude of 2800m, the sample plot size is 30m × 30m, 90 rain cones with a diameter of 20cm are arranged in the sample plot with an interval of 3M, and 20 water tanks with two specifications (I is 200cm * 20cm, II is 400cm * 20cm) are arranged to observe the interception data in the forest. A dsj2 (Tianjin Meteorological Instrument Factory) siphon rain gauge was set up in the open land about 50m away from the sample site to observe the rainfall and rainfall characteristics outside the forest. After the end of each precipitation event and the stop of penetrating rain in the forest, measure and record the water quantity in each rain cone with a rain gauge.
MA Wenying, ZHAO Chuanyan
Location of automatic weather station: longitude and latitude 38.43n, 99.93e, altitude 3100m. The observation time is from May 9, 2013 to September 3, 2013, the parameter scale is hourly scale, and the data is recorded in 10min. The observation parameters include average wind speed (M / s), maximum wind speed (M / s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, par, air temperature, relative humidity, solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature.
MA Wenying, ZHAO Chuanyan
Canopy interception field is located in 2700m forest in Pailugou watershed of Qilian mountain, with 60 precipitation interception barrels arranged at equal intervals on the ground. The specifications of the interception barrel are: the radius of the bottom surface is 10cm and the height is 35cm. The observation period was from June to July 2012 and from July to September 2013, and 17 precipitation events (including each precipitation) were recorded. The unit is mm.
HE Zhibin
Leaf area index, also known as leaf area coefficient, refers to the multiple of the total area of plant leaves in the land area per unit land area. Leaf area index is an important structural parameter of ecosystem, which is used to reflect the number of plant leaves, the change of canopy structure, the life activity of plant community and its environmental effect, to provide structured quantitative information for the description of material and energy exchange on the canopy surface, and to balance the energy of carbon accumulation, vegetation productivity and the interaction between soil, plant and atmosphere, Vegetation remote sensing plays an important role. The leaf area index and other indexes of Picea crassifolia forest in Pailugou watershed were measured by plant canopy imager CI - 110
CHANG Xuexiang
Background: this data interchange is the first data interchange of the key project of "integrated study of eco-hydrological processes in heihe basin", "genomics research on drought tolerance mechanism of typical desert plants in heihe basin".The main research targets of the key projects is a typical sand desert plants are Holly, using the current international advanced a new generation of gene sequencing technology to the whole genome sequence and gene transcription of Holly group sequence decoding, so as to explore related to drought resistance gene and gene groups, and transgenic technology in model to verify their drought resistance in plants. Process and content: as genome sequencing requires special sequencing equipment, the project is huge and the process is complex (mainly including genome library construction, sequencing, data analysis and genome assembly), so it needs to be completed by a professional sequencing company.After contacting with sequencing companies, we learned that before sequencing an unknown genome, the size and complexity of the genome should be predicted, which is a necessary prerequisite for designing sequencing schemes and strategies.Therefore, in 2013, we mainly predicted the chromosome composition, genome size and complexity of sand Holly, and successfully established the extraction and purification method of its genomic DNA.The results showed that the plant was diploid, the genome was composed of 9 staining lines (18 lines of diploid), and the genome size was 1.07G.The quality test results of the genomic DNA indicated that the requirements of the obtained DNA complex sequencing have been sent to the sequencing company for library construction and sequencing, which is now in progress.In addition, in order to obtain a large number of uniform plant materials, we have discussed the induction of callus, which has been successful.Due to these reasons, we were unable to complete the genome sequencing and submit the relevant data of sand Holly in accordance with the original plan of the project this year, mainly because we did not count the predicted contents of the genome before. Data usage: the data obtained in this year on ploidy, karyotype composition and genome size of lycopodium SPP.The success of the callus induction provides a high-quality material guarantee for the subsequent transcriptome sequencing and drought-resistance mechanism research experiments, and it is also a new contribution to the cytological and physiological research of the plant.
HE Junxian, GU Lifei
The data was directly clipped from China's 1:100,000 land-use data.China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data).
LIU Jiyuan, WANG Jianhua
Precipitation is one of the elements of meteorological monitoring and a measurement basis of regional precipitation. Precipitation is the only source of water for plants’ survival in mountain areas. Therefore, precipitation is the main link of the forest hydrological cycle. This data only provides precipitation of the Pailugou watershed during the growing season.
CHANG Xuexiang
The runoff record of Pailugou watershed in the upper reaches of Heihe River, dated from January 2011 to September 2012. The data measuring device is the measuring weir at the exit of the small watershed, the unit of the data is m³/day.
HE Zhibin
ASAR (Advanced Synthetic Aperture Radar) is a Synthetic Aperture Radar sensor mounted on ENVISAT satellite. It operates in c-band with a wavelength of 5.6 cm and features multi-polarization, variable observation Angle and wide-range imaging. Heihe river basin of ENVISAT ASAR remote sensing data sets mainly through central Europe "dragon plan" project, the data to the Image mode, cross polarization (Alternating Polarisation) model with wide is given priority to, the spatial resolution of 30 meters. ENVISAT ASAR data 404 scenes are currently available in heihe river basin, including 82 scenes in APP mode, 7 scenes in IMP mode and 315 scenes in WSM mode. The acquisition time is: APP can choose the polarization mode, the time range is from 2007-08-15 to 2007-12-23, 2008-01-02 to 2008-12-20, 2009-02-15 to 2009-09-06; IMP imaging mode, time range from 2009-06-19 to 2009-07-12; WSM wide format, time range from 2005-12-05 to 2005-12-31,2006-01-06 to 2006-12-31, 2007-01-01 to 2007-12-30, 2008-01-01 to 2008-12-28, 2009-03-13 to 2009-05-22. Product level is L1B, without geometric correction, is amplitude data.
European Space Agency
Three artificial rainfall events were performed on the shady grassland at the altitude of 2700m in the Pailugou watershed of the Qilian Mountains. The times were July 15, 2011, July 16, and July 22, 2011, respectively. Runoff rate, data is recorded every half an hour. Two rainfall simulations were also performed on the sun-slope grassland at the same altitude. As a comparative experiment, the time was July 24 and 25, 2011.
HE Zhibin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn