1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the scale data from January 1, 2012 to December 31, 2012.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m
JIA Li
NDVI products based on MODIS (myd13a2 and mod13a2) use the improved hats algorithm to remove the cloud and reconstruct the daily and 1km resolution NDVI data set in 2001-2011. The product coordinate system is longitude and latitude projection, and the spatial range is 96.5e-102.5e, 37.5n-43n. Every day's data is stored as a geotif file. The name is Heihe ﹣ YYY ﹣ NDVI ﹣ recon.ddd.tif, where yyyy is the year and DDD represents a certain day in a specific year. There are 365 days of output data by default every year. The data type is 16bit shaping, the pixel filling value of invalid value is - 3000, the effective data range is - 2000-10000, and the scaling factor is 0.0001.
JIA Li
Meteorological elements are indicators of atmospheric variables or phenomena indicating weather conditions at a given place and at a given time. We used automatic forest weather station to monitor the meteorological elements data of Pailugou Watershed at 2800m above sea level. The main meteorological elements monitored include total radiation, net radiation, temperature, relative humidity, wind speed, and wind direction, which basically reflect the changes in meteorological elements in the Qinghai spruce forest.
CHANG Xuexiang
Soil moisture, also known as soil humidity. It is the moisture that remains in the pore space of the soil. The main source of soil moisture in Qinghai spruce forest is atmospheric precipitation, which is the only source of water absorption of Qinghai spruce to survive. The data is the soil moisture of Qinghai spruce forest in Pailugou of Heihe River Basin measured by the EM50 soil moisture meter produced in the United States.
CHANG Xuexiang
Forest survey is the application of measurement, tree measurement, remote sensing and other professional techniques and methods, survey, sampling and computer technology and other means to understand the quantity, quality, distribution and growth of forests within a specific range, so as to provide basic data for the formulation of forestry policies and scientific management of forests, as well as for scientific research. In the drainage ditch watershed of Qilian Mountain, there are three plots of Picea crassifolia forest in Qinghai Province, each of which is 2800m, 2900m and 3000m above sea level. Plot 01 is 20 * 30m and plot 02-09 is 20 * 35m. The traditional methods were used to investigate the tree height, DBH, base diameter and crown diameter of Picea crassifolia, providing basic data for the study of ecological hydrology of Picea crassifolia forest in the upper reaches of Heihe River.
CHANG Xuexiang
Soil evaporation in forest land is a process in which water in soil enters the atmosphere from the soil surface through rising and vaporizing. Soil evaporation affects the change of soil water content, which is an important part of hydrological cycle. The data were observed by the mini lysmeter evaporation tube, which was designed to provide data support for the study of water vertical exchange rule of Picea crassifolia forest.
CHANG Xuexiang
Forest canopy interception refers to the hydrological process in which part of water is intercepted and received by forest canopy and redistributed to precipitation in the process of precipitation. The data include precipitation, throughfall, canopy interception and interception rate, which are mainly used to provide data support for understanding the eco hydrological process of Picea crassifolia forest.
CHANG Xuexiang
Canopy conductance (mm s-1) is a sensitive index of forest transpiration response to environmental factors, and is a key parameter in water and carbon exchange model. The data is obtained by expanding the water consumption scale measured by stem sap flow technology to the stand scale to obtain the water consumption of the stand, and then using penman equation to calculate. This data mainly provides basic data for some eco hydrological models.
CHANG Xuexiang
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 22, 2008. Observation items included: (1) Albedo by the shortwave radiometer in Huazhaizi desert No. 2 plot. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (2) BRDF of maize in Yingke oasis maize field by ASD (350-2 500 nm) from Beijing University and the observation platform of BNU make. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°; BRDF in Huazhaizi desert No. 2 plot by ASD from Institute of Remote Sensing Applications (CAS) and the observation platform of its own make, whose maximum height was 2m above the ground with the zenith angle -70°~70°. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, GUO Xinping, REN Huazhong, ZOU Jie, LIU Sihan, ZHOU Chunyan, FAN Wenjie, TAO Xin
The dataset of ground truth measurements for snow synchronizing with the airborne microwave radiometers (K&Ka bands) mission was obtained in the Binggou watershed foci experimental area on Mar. 30, 2008. Those provide reliable data for retrieval of snow parameters and properties, especially for dry and wet snow identification. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-A; (2) Snow parameters including snow depth, the snow surface temperature synchronizing with the airborne microwave radiometers (K&Ka bands), the snow layer temperature, the snow grain size and snow density in BG-A (10 points), BG-B (6 points), BG-F (12 points), BG-H (21 points) and BG-I (20 points); For each snow pit, the snowpack was divided into several layers with 10-cm intervals of snow depth. The layer depth (by the ruler), the snow grain size (by the handheld microscope), snow density (by the cutting ring) and the snow temperature (by the probe thermometer) were obtained at each snow pit. Two files including raw data and the preprocessed data were archived.
BAI Yanfen, BAI Yunjie, GE Chunmei, GU Juan, HAO Xiaohua, LI Hongyi, LI Zhe, LIANG Ji, MA Mingguo, SHU Lele, WANG Jianhua, WANG Xufeng, WU Yueru, XU Zhen, ZHU Shijie, LI Hua, CHANG Cun, MA Zhongguo, JIANG Tenglong, XIAO Pengfeng , LIU Yan, ZHANG Pu, CHE Tao
The dataset of airborne imaging spectrometer (OMIS-II) mission was obtained in the Linze station-Linze grassland flight zone on Jun. 15, 2008. Data after radiometric correction and calibration and geometric approximate correction were released. The flying time of each route was as follows: {| ! id ! flight ! file ! starttime ! lat ! long ! alt ! image liange ! endtime ! lat ! long ! lat |- | 1 || reservoir 1 || 2008-06-15_11-55-28_DATA.BSQ || 12:12:48 || 39.013 || 100.236 || -1.0 || 2540 || 12:15:37 || 39.085 || 100.150 || -1.0 |- | 2 || 1-13 || 2008-06-15_12-15-51_DATA.BSQ || 12:20:47 || 39.172 || 100.048 || 2867.7 || 5572 || 12:26:58 || 39.359 || 100.190 || 2867.8 |- | 3 || 1-12 || 2008-06-15_12-27-13_DATA.BSQ || 12:31:59 || 39.366 || 100.188 || 2846.6 || 5067 || 12:37:37 || 39.185 || 100.051 || 2867.8 |- | 4 || 1-11 || 2008-06-15_12-37-51_DATA.BSQ || 12:42:52 || 39.179 || 100.039 || 2878.8 || 5542 || 12:49:02 || 39.363 || 100.179 || 2884.8 |- | 5 || 1-10 || 2008-06-15_12-49-16_DATA.BSQ || 12:54:29 || 39.373 || 100.179 || 2909.9 || 5116 || 13:00:10 || 39.187 || 100.039 || 2897.3 |- | 6 || 1-9 || 2008-06-15_13-00-24_DATA.BSQ || 13:05:30 || 39.182 || 100.028 || 2864.2 || 5498 || 13:11:37 || 39.366 || 100.167 || 2859.7 |- | 7 || 1-8 || 2008-06-15_13-11-51_DATA.BSQ || 13:17:22 || 39.377 || 100.169 || 2846.8 || 5114 || 13:23:02 || 39.191 || 100.029 || 2862.3 |- | 8 || 1-7 || 2008-06-15_13-23-17_DATA.BSQ || 13:28:06 || 39.187 || 100.0187 || 2857.1 || 5497 || 13:34:13 || 39.372 || 100.158 || 2842.5 |- | 9 || 1-6 || 2008-06-15_13-34-27_DATA.BSQ || 13:39:10 || 39.380 || 100.158 || 2909.7 || 5184 || 13:44:55 || 39.197 || 100.019 || 2861.8 |- | 10 || 1-5 || 2008-06-15_13-45-10_DATA.BSQ || 13:50:09 || -1.000 || -1.000 || -1.0 || 5488 || 13:56:09 || -1.000 || -1.000 || -1.0 |- | 11 || 1-4 || 2008-06-15_13-56-23_DATA.BSQ || 14:01:20 || -1.000 || -1.000 || -1.0 || 5353 || 14:07:18 || -1.000 || -1.000 || -1.0 |- | 12 || 1-3 || 2008-06-15_14-07-32_DATA.BSQ || 14:12:36 || -1.000 || -1.000 || -1.0 || 5350 || 14:18:30 || -1.000 || -1.000 || -1.0 |- | 13 || 1-2 || 2008-06-15_14-18-46_DATA.BSQ || 14:22:48 || -1.000 || -1.000 || -1.0 || 5236 || 14:28:31 || -1.000 || -1.000 || -1.0 |- | 14 || 1-1 || 2008-06-15_14-28-49_DATA.BSQ || 14:34:02 || -1.000 || -1.000 || -1.0 || 5964 || 14:40:11 || -1.000 || -1.000 || -1.0 |- | 15 || reservoir 2 || 2008-06-15_14-40-51_DATA.BSQ || 14:51:05 || -1.000 || -1.000 || -1.0 || 6846 || 14:58:35 || -1.000 || -1.000 || -1.0 |}
Liu Liangyun, LI Xin, MA Mingguo
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the E'bao foci experimental area on Oct. 17, 2007 during the pre-observation period The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by the WET soil moisture tachometer; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density by drying soil samples from the cutting ring. Meanwhile, vegetation parameters as height, coverage and water content were also observed. Meanwhile, vegetation parameters as height, coverage and water content were also observed. Those provide reliable ground data for retrieval and verification of soil moisture, soil freeze/thaw status and the microwave radiative transfer model from active remote sensing approaches.
CHAO Zhenhua, CHE Tao, QIN Chun, WU Yueru
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No.2 quadrate of the A'rou foci experimental area on Oct. 17, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. The quadrate was divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture by ML2X; soil volumetric moisture, soil conductivity, soil temperature, and the real part of soil complex permittivity by WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
The dataset of PR2 soil moisture profile observations (10cm, 20cm, 30cm, 40cm, 60cm and 100cm) was obtained in the Linze grassland foci experimental area. The sample points, with various underlying surface and depth were measured by PR2 probe in PR2 quadrate (3Grid×3Grid, 90m×90m) and PR2 line. Observations were carried out from May 31 to Jul. 13, 2008 with exceptions on Jun. 6, 8, 10, 13, 21, 27, 28, 29, Jul. 3 and 12. Data were archived in Excel and Word file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HAN Xujun, HU Xiaoli, HUANG Chunlin, JIANG Xi, LI Hongxing, LIANG Ji, LIU Chao, NIAN Yanyun, WANG Shuguo, WANG Xufeng, WU Yueru, ZHU Shijie, FENG Lei, YU Fan, WANG Jing, LI Xiaoyu
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area on Oct. 17, 2007 during the pre-observation period. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected: the soil temperature , volumetric soil moisture (cm^3/cm^3), soil salinity (s/m), soil conductivity (s/m) by the Hydra probe, the surface radiative temperature by the handheld infrared thermometer, gravimetric soil moisture, volumetric soil moisture, and soil bulk density by drying soil samples from the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Those provide reliable ground data for the development and validation of soil moisture, soil freeze/thaw algorithms and the forward model from active remote sensing approaches.
BAI Yunjie, CAO Yongpan, LI Xin, Wang Weizhen, WANG Xufeng
The dataset of ground truth measurement synchronizing with EO-1 Hyperion was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 25, 2008. Observation items included: (1) Atmospheric parameters on the ICBC resort office roof by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Ground object reflectance spectra f new-born rape and the bare land in Biandukou foci experimental area by ASD FieldSpec (350~2500 nm) from BNU. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Soil moisture (0-40cm) by the cutting ring and the soil temperature (0-40cm) by the thermocouple in Huazhaizi desert No. 1 plot and the windbreak forest; and soil moisture and the soil temperature (0-100cm) in Yingke oasis maize field. Data were archived in Excel format. (4) LAI. The maximum leaf length and width of each alfalfa and barley were measured. Data were archived in Excel format. (5) Coverage of maize and wheat in Yingke oasis maize field, of vegetation (Reaumuria soongorica) in Huazhaizi desert No. 1 and 2 plots by the self-made coverage instrument and the camera (2.5m-3.5m above the ground). Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as surroundings environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage.
CHEN Ling, QIAN Yonggang, REN Huazhong, WANG Haoxing, YAN Guangkuo, GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, GUANG Jie, LI Li, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, TAO Xin, YAN Binyan, YAO Yanjuan
The dataset of snow spectral reflectance observations was obtained in the Binggou watershed foci experimental area on Mar. 23, 2008. Flat open space was chosen for the observations and observation items included: (1) Multi-angle snow spectrum by the observation platform made by BNU for snow bidirectional reflectance properties from 10:50-13:50 BJT; (2) Snow albedo by the total radiometer for its relationship with the solar altitude from 10:00-14:36 BJT; (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration). Two files including raw data and the preprocessed data were archived.
BAI Yunjie, HAO Xiaohua, MA Mingguo, SHU Lele, WANG Xufeng, ZHU Shijie, QU Wei, REN Jie, CHANG Cun, MA Zhongguo, JIANG Tenglong, XIAO Pengfeng , ZHANG Pu
The dateset of soil texture measurements was obtained by the pipette method in the Biandukou and A'rou foci experimental area. Observation items were mainly the soil texture and the soil temperature. Data were archived as Excel files. Sampling locations were not recorded.
PAN Jinmei, ZHAO Shaojie
The dataset of the truck-mounted dual polarized doppler radar observations (time-continuous 10-minute on the 250m×250m horizontal grid) was obtained in the arid region hydrology experiment area from May 20 to Jul. 5, 2008. The observation site (38.73°N, 100.45°E, 1668m) was typical of complex underlying surface and transit zone landscapes. The aim was to explore and retrieve precipitation type and intensity by radar in cold regions, with the precipitation particle drop size analyzer and ground intensive measurements occurring simultaneously, thus making it possible to produce a high resolution precipitation dataset. The 714XDP X-band dual-linear polarization Doppler weather radar was with a horizontal resolution of 150 m, an azimuth resolution of 1, VCP from 10-22 layers and the scanning cycle 10 minutes. ZH, ZDR and KDP could be acquired together. For more details, please refer to Readme file.
CHU Rongzhong, ZHAO Guo, HU Zeyong, ZHANG Tong, JIA Wei
The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 22, 2008. Simultaneous east-west ground measurements on the canopy temperature, the half-height temperature and the land surface radiative temperature were carried out by the hand-held infrared thermometer at intervals of 125m in 8 quadrates (2km×2km), No.1 quadrate (H01-H08) on Jun. 22, No.2 quadrate (H09-H16) on Jun. 23,No.3 quadrate (H17-H24) on Jun. 22, No.4 quadrat (H25-H32) on Jun. 23, No.5 quadrate (H33-H40) on Jun. 22, No.6 quadrate (H41-H48) on Jun. 23, No,7 quadrate (H49-H56) and No.8 quadrate (H57-H64) on Jun. 23. Data were archived in Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, NIAN Yanyun, WANG Xufeng, LIANG Wenguang
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn