On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
Soil survey data corresponding to the ejin delta and the ecological vegetation sample during the project implementation period. Soil profile sampling corresponding to the ecological vegetation survey in ejin delta (5), 20 cm stratified sampling.Investigation items included: soil salinity, soil organic matter, C, N, P, etc., time: August 2011.
YU Jingjie
On 25 August 2012, Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was utilized to obtain point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
Soil water content is the key factor affecting the transpiration water consumption of plants in desert riparian forest. In this project, the typical plant communities in the lower reaches of Heihe River are selected, with coordinates of 42 ° 02 ′ 00.07 ″ N and 101 ° 02 ′ 59.41 ″ E. through continuous measurement of soil water data in 2010-2012, the observation instrument is environscan (Australia, ICT), with observation depth of 10, 30, 50, 80 and 140cm, and observation frequency of 0.5h Understanding the mechanism of environmental regulation of transpiration water consumption of desert riparian forest in the lower reaches of Heihe River provides basic data support.
SI Jianhua
1. Data overview: This data set is the groundwater level data of qilian station from January 1, 2012 to December 31, 2012.Well no. 1 is located at the side of the general controlled hydrologic section of the cucurbitou basin, with a depth of 12.8m and an aperture of 12cm.The second well is located to the east of the delta about 100m away from the river. The depth of the well is 14.7m and the aperture is 12cm. 2. Data content: U20-hobo water level sensor is installed in the underground well, which is mainly used to monitor the groundwater level changes in the small gourgou watershed. The data are daily scale data. 3. Space and time range: Geographical coordinates of well no. 1: longitude: longitude: 99° 53’e;Latitude: 38°16 'N;Elevation: 2974m (near the hydrological section at the outlet of the basin). Geographical coordinates of well no. 2: longitude: 99° 52’e;Latitude: 38°15 'N;Altitude: 3204.1m (east of the eastern branch of the delta).
HAN Chuntan
Leaf water potential is an important indicator of plant growth. In this project, Populus euphratica and Tamarix were selected in the lower reaches of Heihe River. Wp4c was used for 15 days to measure leaf water potential data before dawn, noon and sunset, which can provide basic data for understanding the growth conditions of desert plants.
SI Jianhua
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
The accurate estimation of sapwood area and heartwood area is the main means to convert the transpiration water consumption scale. In October 2011, this project investigated the sapwood and heartwood of 98 Populus euphratica in Ejin Oasis and measured the width of sapwood and heartwood. The relation curve of sapwood area with DBH and height was established. Please refer to LI Wei, SI Jianhua,FENG Qi, YU Teng fei. Response of Transpiration to Water Vapour Pressure Defferential of Populus euphratica. Journal of Desert Research, 2013, 33(5): 1377-1384. for details.
SI Jianhua
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the scale data from January 1, 2012 to December 31, 2012.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m.
CHEN Rensheng, HAN Chuntan
The sampling and distribution of plant materials in the arid regions of the middle and lower reaches of Heihe River Basin. The plants are mainly shrubs and a few herbs. The numbering of plant materials is consistent with the morphological structural characteristics analysis table and is used in correspondence with each other.
LIU Yubing
This data set contains the observation data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. The observation items include: atmospheric wind temperature and humidity gradient observation (2cm, 4cm, 10cm, 20m and 30m), wind direction, air pressure, photosynthesis effective radiation, precipitation, radiation four components, surface temperature, multi-layer soil temperature (5cm, 10cm, 15cm, 20cm and 40cm), soil moisture (10cm, 20cm, 50cm, 100cm and 180cm) and soil heat flux (5cm, 10cm and 15cm). Please refer to the instruction document published with the data for specific header and other information.
Zhangye city meteorological bureau
The survey area is 101 ° 3 ′ 13.265 ″ longitude, 42 ° 1 ′ 53.660 ″ latitude and 883.54m altitude. The sample area is 100 × 100m, and the sample area is 20 × 20m. The crown width, height and DBH of Populus euphratica were investigated.
SI Jianhua
Trunk sap flow is an effective tool for measuring transpiration of a single plant. In this project, the trunk sap flow data of Populus euphratica in the lower reaches of Heihe River was measured by HRM (ICT, Australia) with a frequency of 0.5h. In the growth season of 2012-2013, the installation location is the north and lateral roots (50cm underground depth, 30cm away from the trunk) at the DBH (1.3m).
SI Jianhua
On 25 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain LiDAR DSM point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Aerial LiDAR-DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
This data set is the multispectral data used to retrieve 30 meter Lai and fAPAR products in 2012. It is obtained by the environmental satellite CCD sensor with a resolution of 30 m and four bands. This data set has been geometric corrected, radiometric corrected and converted into reflectivity image.
FAN Wenjie
Lysimeter is the most effective tool for measuring water consumption per plant, which can provide daily, monthly and seasonal changes of transpiration water consumption per plant. In this project, a lysimeter measurement system for Populus euphratica seedlings is established in the lower reaches of Heihe River, with the observation frequency of 0.5h, mainly including water content changes, infiltration, evapotranspiration, etc.
SI Jianhua
This dataset include soil moisture and soil temperature observations of 50 SoilNET Nodes during June 2012~March 2013 (UTC+8), which located in a MODIS pixel in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area, and aim to capture the spatial-temporal variance at the ~100 m scale. Each SoilNET node observe the soil moisture and soil temperature at 4 cm, 10 cm, 20 cm and 40 cm depth using the SPADE sensor with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "SoilNET_data_document.docx".
WANG Xufeng, KANG Jian, Li Dazhi, Wang Zuocheng, Dong Cunhui, LI Xin, MA Mingguo
Based on MODIS Lai products (mcd15a2 and mod15a2), the daily and 1km resolution Lai datasets of 2001-2011 are obtained by using the improved hats algorithm to remove the cloud and reconstruct. The product coordinate system is longitude and latitude projection, and the spatial range is 96.5e-102.5e, 37.5n-43n. Every day's data is stored as a geotif file. The name is Heihe YYY ɇ Lai ɇ recon.ddd.tif, where yyyy is the year and DDD represents a certain day in a specific year. There are 365 days of output data by default every year. The data type is single precision floating-point type, the pixel filling value of invalid value is 255, the valid data range is 0-100, and the scaling factor is 0.1.
JIA Li
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn