Data source: China l Meteorological Administration Network; Data Content: Daily Rainfall Data Series of Heihe River Basin from 1990 to 2004; Evaporation Data of Heihe River Basin from 2000 to 2012. Data Spatial Range: Rainfall Data (Yingluoxia, Shandan, Gaoya, Pingchuan, Ganzhou Pingshan Lake, Zhengyixia Gorge, Liyuan River); Evaporation Data (Zhangye, Gaotai, Dingxin, Jiuquan, Jinta, Shandan, Ejina, Hequ)
WANG Zhongjing, ZHENG Hang
Images: MODIS images Preparation method: Tsinghua redraw remote sensing evapotranspiration model calculation Spatial scope: Heihe River Basin Time range: data from 2001 to 2014
WANG Zhongjing, ZHENG Hang
According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil organic carbon content in different layers are produced by using the digital soil mapping method. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_soc_layer1.tif: 0-5cm soil organic carbon content; hh_soc_layer2.tif: 5-15cm soil organic carbon content; hh_soc_layer3.tif: 15-30cm soil organic carbon content; hh_soc_layer4.tif: 30-60cm soil organic carbon content; hh_soc_layer5.tif: 60-100cm soil organic carbon content;
ZHANG Ganlin
Using ETWatch model with the system complete the heihe river basin scale 1 km resolution 2014 surface evaporation data with middle oasis 30 meters resolution on scale data set, the surface evaporation raster image data of the data sets, it is the time resolution of scale from month to month, the spatial resolution of 1 km scale (covering the whole basin) and 30 meters scale (middle oasis area), the unit is mm.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: 1) 1 km resolution remote sensing data set Monthly cumulative ET value file name: heihe-1km_2014m01_eta.tif Heihe refers to heihe river basin, 1km means the resolution is 1km, 2014 means the year of 2014, m01 means the month of January, eta means the actual evapotranspiration data, and tif means the data is tif format. Name of quarterly cumulative ET value file: heihe-1km_2014s01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2014 represents the year of 2014, s01 represents the period from January to march, and the first quarter, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Annual cumulative value file name: heihe-1km_2014y_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2014 represents the year of 2014, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format. 2) remote sensing data set with a resolution of 30 meters Monthly cumulative ET value file name: heihe-midoasa-30m_2014m01_eta.tif Heihe represents the heihe river basin, midoasis represents the mid-range oasis area, 30m represents the resolution of 30 meters, 2014 represents 2014, m01 represents January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-midoasa-30m_2014s01_eta.tif Heihe represents the heihe river basin, midoasis represents the mid-range oasis area, 30m represents the resolution of 30 meters, 2014 represents 2014, s01 represents january-march, and the first quarter, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Annual cumulative value file name: heihe-midoasa-30m_2014y_eta.tif Heihe represents the heihe river basin, midoasis represents the mid-range oasis area, 30m represents the resolution of 30 meters, 2014 represents the year of 2014, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.
WU Bingfang
This data set contains meteorological element observation data from January 1, 2015 to April 17, 2015 from huangcaogou station, upstream of heihe hydrometeorological observation network.The station is located in huangcaogou village, ebao town, qilian county, qinghai province.The latitude and longitude of the observation point is 100.7312e, 38.0033n and 3137m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question, and there are many questions about the measured wind direction of the station;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name.The station was demolished after April 17. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
1、 Data Description: data includes doc and DIC values of river water and groundwater in hulugou small watershed from July to September 2015. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. The first sampling point is located at the hydrological section at the outlet of hulugou Small Watershed at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points. The spring sampling point is located at 20 m to the east of the drainage basin outlet, with the longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: Doc and DIC values of samples were measured by oiaurora 1030w TOC instrument, detection range: 2ppb c-30000ppm C.
MA Rui , HU Yalu
The data set contains the observation data of meteorological elements from the Huyanglin Station, which is located along the lower reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2015 to December 31, 2015. The station is located in Sidaoqiao, Dalaihubu Town, Ejina Banner, Inner Mongolia, the underlying surface is Populus euphratica forest and Tamarisk. The latitude and longitude of the observation point is 101.1239E, 41.9932N, and the altitude is 876m. The air temperature and relative humidity sensor s are erected 28 meters above the ground, facing North; the wind speed sensor is set at 28m, facing north; the four-component radiometer is installed 24 meters above the ground, facing South; two infrared thermometers are installed 24 meters above the ground, facing South, and the probe orientation is vertical downward; two photosynthetically active radiometers are installed 24 meters above the ground, facing South, and the two probes are vertically upward and downward respectively; the soil temperature probes are buried respectively at 0cm on the ground surface, 2cm and 4cm under the ground, they are located 2 meters from the meteorological tower in the North. The soil moisture sensors are buried 2cm and 4cm under the ground, 2 meters from the meteorological tower in the South. The soil heat flow boards (3 pieces) are buried 6cm under the ground, 2 meters from the meteorological tower in the South. Observed items include: air temperature and humidity (Ta_28m, RH_28m) (unit: Celsius, percentage), wind speed (WS_28m) (unit: m/s), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watt / square meter), surface radiation temperature (IRT_1, IRT_2) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts / square meter), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm) (unit : Celsius), soil moisture (Ms_2cm, Ms_4cm) (unit: volumetric water content, percentage), up and down photosynthetically active radiation (PAR_up, PAR_down) (unit: micromoles / square meter second). Processing and quality control of observation data: (1) Ensure 144 data per day (every 10 minutes), if there is missing data, it is marked as -6999. Due to instrument adjustment, data between April 22 to April 27 of 2015 is missing. Soil heat flux data between June 19 to September 5 is missing due to sensor failure. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2015-9-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau.
MA Rui , HU Yalu
一. data description The data included the precipitation, river water and groundwater in the small calabash valley from July to September 2015 2H, 18O, with a sampling frequency of 2 weeks/time. 二. Sampling location (1) the precipitation sampling point is located in the ecological hydrology station of the institute of cold and dry regions, Chinese academy of sciences, with the latitude and longitude of 99 ° 53 '06.66 "E, 38 ° 16' 18.35" N. (2) the sampling point of the river is located at the outlet flow weir of haugugou small watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N.The water sampling point number 2 position for heihe river upstream hoist ditch Ⅱ area exports, latitude and longitude 99 ° 52 '58.40 "E, 38 ° 14' 36.85" N. (3) underground water spring and well water sampling points.The sampling point of spring water is located at 20m to the east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E, 38°16' 11.44" N. The well water sampling point is located near the intersection of east and west branches, with the latitude and longitude of 99 ° 52 '45.38 "E, 38 ° 15' 21.27" N. 三. Test method The δ2H and δ18O values of the samples were measured by PICARRO L2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by the test accuracy value of v-smow relative to the international standard substance, and the measurement accuracy was 0.038‰ and 0.011‰, respectively.
MA Rui , XING Wenle
1、 Data Description: the data includes the samples of anions and anions of river water and groundwater in hulugou small watershed from July to September 2015 for test and analysis. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. One is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with latitude and longitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points are 20 m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: the cation of sample is tested by inductively coupled plasma atomic emission spectrometer (ICP-AES), the test accuracy is 0.05mg/l, and the anion is tested by ion chromatograph (ics1100), the test accuracy is 0.002mg/l.
MA Rui , HU Yalu
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of A’rou shady slope station between 8 August, 2013, and 31 December, 2013. The site (100.411° E, 37.984° N) was located on a cold grassland surface on the shady slope, which is near south of A’rou township, Qilian county, Qinghai Province. The elevation is 3536 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (278; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR4; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and two photosynthetically active radiation (PQS-1; 6 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
1、 Data Description: the data includes the river flow data at the outlet of No.2 catchment of hulugou small watershed from May 4, 2016 to September 3, 2016. 2、 Sampling location: the coordinates of river flow monitoring section are located at the outlet of No. 2 catchment near the red wall, with the coordinates of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n.
MA Rui , HU Yalu
The site No. 1 EC towers were used for the intercomparison field in the Yingke irrigation district (1552.75 m, 38°59′51.71″ N, 100°24′38.76″ E). The land surface is homogeneous and dominated by vegetables in the middle reaches of the Heihe River Basin. The precipitation comparison dataset was collected between 12 June, 2012, and 22 November, 2012. The dataset includes data for five different rain gauge types, i.e., pit gauge, Chinese standard manual precipitation gauge, siphon rain gauge, tipping bucket gauge, and weighting gauge. The mountain heights for these gauges were 0.0, 0.7, 1.2, 1.5, and 1.5 m, respectively. The data were recorded every 1 hour, 1 day, 10 minutes, 10 minutes, and 10 minutes, respectively. The main objective of the data collection was to perform an intercomparison of in situ rainfall measurements. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.
ZHANG Jian, NING Tianxiang, HUANG Xiaoming, JIANG Heng, LIU Shaomin, LI Xin
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of A’rou sunny slope station between 8 August, 2013, and 31 December, 2013. The site (100.520° E, 38.090° N) was located on a cold grassland surface in the sunny slope, which is near north of A’rou town, Qilian county, Qinghai Province. The elevation is 3529 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (034B; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and two photosynthetically active radiation (PQS-1; 6 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/(s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux observation matrix measurements obtained from the automatic weather station (AWS) at the Daman superstation between 10 May and 26 September, 2012. The site (100.37223° E, 38.85551° N) was located in a cropland (maize surface) in the Daman irrigation, which is near Zhangye, Gansu Province. The elevation is 1556.06 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m), four-component radiometer (PSP&PIR; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, vertically downward), photosynthetically active radiation (LI-190SB; 12 m, towards south), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil heat flux (HFP01SC; 3 duplicates with one below the vegetation; and the other between plants, -0.06 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m, m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30 m, and WD_40 m, °), air pressure (press, hpa), precipitation (rain, mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), photosynthetically active radiation (PAR, μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm, ℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
This dataset contains the automatic weather station (AWS) measurements from site No.12 in the flux observation matrix from 10 May to 21 September, 2012. The site (100.36631° E, 38.86515° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.25 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45D; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (034B; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
The No. 8 hydrological section is located at Gaotai Heihe River Bridge (39 ° 23′22 .93 ″ N, 99 ° 49′37 .29″ E, 1347 m a.s.l.) in the middle reaches of the Heihe River Basin, Zhangye, Gansu Province. The dataset contains observations from the No.8 hydrological section from 17 June, 2012, to 24 November, 2012. The width of this section is 130 meters. The water level was measured using SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following sections: Water level (recorded every 30 minutes) and Discharge. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.
HE Xiaobo, ZHANG Jian, NING Tianxiang, HUANG Xiaoming, JIANG Heng, LIU Shaomin, LI Xin
This data set includes the observation data of 25 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River from January 2015 to December 2015. 4cm and 20cm soil moisture / temperature is the basic observation of each node; some nodes also include 10cm soil moisture / temperature, surface infrared radiation temperature, snow depth and precipitation observation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. For details, please refer to "2015 data document 20160501. Docx of water net of Babao River in the upper reaches of Heihe River"
KANG Jian, LI Xin, MA Mingguo
The 1km / 5day vegetation index (NDVI / EVI) data set of Heihe River basin provides a 5-day resolution NDVI / EVI composite product in 2015. The data uses the characteristics of China's domestic FY-3 satellite data with high time resolution (1 day) and spatial resolution (1km) to construct a multi angle observation data set. Based on the analysis of the multi-source data set and the existing composite vegetation index products and algorithms A global synthetic vegetation index product algorithm system based on multi-source data set is proposed. The vegetation index synthesis algorithm of MODIS is basically adopted, that is, the algorithm system of BRDF angle normalization method, cv-mvc method and MVC method based on the semi empirical walthal model. Using the algorithm system, the composite vegetation index is calculated for the first level data and the second level data, and the quality is identified. Multi-source data sets can provide more angles and more observations than a single sensor in a limited time. However, due to the difference of on orbit running time and performance of sensors, the observation quality of multi-source data sets is uneven. Therefore, in order to make more effective use of multi-source data sets, the algorithm system first classifies the quality of multi-source data sets, which can be divided into primary data, secondary data and tertiary data according to the observation rationality. The third level data are observations polluted by thin clouds and are not used for calculation. In the middle reaches of Heihe River, the verification results of farmland and forest areas show that the NDVI / EVI composite results of combined multi temporal and multi angle observation data are in good agreement with the ground measured data (RMSE = 0.105). Compared with the time series of MODIS mod13a2 product, it fully shows that when the time resolution is increased from 16 days to 5 days, a stable and high-precision vegetation index can describe the details of vegetation growth in detail. In a word, the NDVI / EVI data set of Heihe River Basin, which is 1km / 5day, comprehensively uses multi temporal and multi angle observation data to improve the estimation accuracy and time resolution of parameter products and better serves the application of remote sensing data products.
LI Jing, LIU Qinhuo, ZHONG Bo, YANG Aixia
The 5-day Lai synthesis results in 2015 are provided by the 1 km / 5-day Lai data set of Heihe River Basin. The data set is constructed by using the data of Terra / MODIS, Aqua / MODIS, as well as the domestic satellites fy3a / MERSI and fy3b / MERSI to construct the multi-source remote sensing data set with a spatial resolution of 1 km and a time resolution of 5 days. Multi-source remote sensing data sets can provide more angles and more observations than a single sensor in a limited time. However, due to the difference of on orbit running time and performance of sensors, the observation quality of multi-source data sets is uneven. Therefore, in order to make more effective use of multi-source data sets, the algorithm first classifies the quality of multi-source data sets, which can be divided into first level data, second level data and third level data according to the observation rationality. The third level data are observations polluted by thin clouds and are not used for calculation. The purpose of quality evaluation and classification is to provide the basis for the selection of the optimal data set and the design of inversion algorithm flow. Leaf area index product inversion algorithm is designed to distinguish mountain land and vegetation type, using different neural network inversion model. Based on global DEM map and surface classification map, PROSAIL model is used for continuous vegetation such as grassland and crops, and gost model is used for forest and mountain vegetation. Using the reference map generated by the measured ground data of the forests in the upper reaches of Heihe River and the oasis in the middle reaches, and scaling up the corresponding high-resolution reference map to 1km resolution, compared with the Lai product, the product has a good correlation between the farmland and the forest area and the reference value, and the overall accuracy basically meets the accuracy threshold of 0.5%, 20% specified by GCOS. By cross comparing this product with Lais products such as MODIS, geov1 and glass, the accuracy of this Lai product is better than that of similar products compared with reference value. In a word, the synthetic Lai data set of 1km / 5 days in Heihe River Basin comprehensively uses multi-source remote sensing data to improve the estimation accuracy and time resolution of Lai parameter products, so as to better serve the application of remote sensing data products.
LI Jing, Yin Gaofei, YIN Gaofei, ZHONG Bo, WU Junjun, WU Shanlong
The 1 km / 5-day FVC data set of Heihe River basin provides the 5-day FVC synthesis results in 2015. The data uses the data of Terra / MODIS, Aqua / MODIS, and domestic satellites fy3a / MERSI and fy3b / MERSI to build a multi-source remote sensing data set with a spatial resolution of 1 km and a time resolution of 5 days. The whole country is divided into different vegetation divisions and land types, and the conversion coefficient of NDVI and FVC is calculated respectively. The conversion coefficient look-up table and 1km / 5-day synthetic NDVI product production area 1km / 5-day synthetic FVC product are used. In the Heihe River Basin, 1 km / 5-day synthetic FVC products can directly obtain vegetation coverage ratio through high-resolution data to reduce the impact of low-resolution data heterogeneity; in addition, select the typical period of vegetation growth and change, obtain the corresponding growth curve parameters of each pixel by fitting the vegetation index of each pixel time series; and then cooperate with land use map and vegetation classification map, To find the representative uniform pixel of the region to train the conversion coefficient of vegetation index. Compared with the results of high-resolution aster reference FVC in Heihe River Basin, the first step is to aggregate the aster products in Heihe River basin to 1km scale by combining the measured ground data and using the scale up method, and to obtain the aster aggregate FVC data, which is based on spot vegetation remote sensing data released by geoland 2 project (geov1 for short) The results show that the results of geov1 are higher than those of ASTER image combined with ground measurement, and the results of 1 km / 5-day synthetic FVC products in Heihe River Basin are between the two, and the results of 1 km / 5-day synthetic FVC products in Heihe River Basin in the experimental area are better than those of geov1 products. In a word, the comprehensive utilization of multi-source remote sensing data to improve the estimation accuracy and time resolution of FVC parameter products can better serve the application of remote sensing data products.
MU Xihan, RUAN Gaiyan, ZHONG Bo, LIU Qinhuo
This dataset provides the estimated results of land cover change (IGBP classification) in 2040, 2070 and 2100 of Heihe River under the latest cmip5 based greenhouse gas emission scenario RCPs (representative concentration pathways). Spatial resolution: 1km. Time period: RCP (2.6, 4.5, 8.5) three scenarios, each scenario corresponding to three time periods: t1:2040, t2:2070, t3:2100. File naming rules: take "HLCs rcp26_" as an example to explain: in the naming, "HLCs" refers to the land cover scenario of Heihe River Basin, rcp26 refers to the rcp2.6 scenario of cmip5, "_40" refers to the future scenario period of 2040, the complete file name means the land cover prediction data of Heihe River Basin in 2040 under the rcp26 scenario, and so on.
FAN Zemeng, YUE Tianxiang
Based on the data information of 21 regular meteorological observation stations in Heihe River Basin and its surrounding areas and 13 national benchmark stations around Heihe River provided by the data management center of Heihe plan, the daily air temperature is statistically sorted out, and the monthly air temperature data of 1961-2010 for many years is calculated, and the spatial stability analysis is carried out to calculate the coefficient of variation. If the coefficient of variation is greater than 100%, then Calculate the relationship between the station and geographical terrain factors by geographical weighted regression, and get the monthly temperature distribution trend; if the coefficient of variation is less than or equal to 100%, calculate the relationship between the station temperature value and geographical terrain factors (longitude, latitude, elevation) by ordinary least square regression, and get the monthly temperature distribution trend; use HASM (high accuracy surface modeling) for the residual after removing the trend Method). Finally, the monthly average temperature distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: average monthly temperature for many years from 1961 to 2010. Spatial resolution: 500M.
ZHAO Na, YUE Tianxiang
Water demand in the middle and lower reaches of Heihe River (mainly including water demand for living, livestock, industry, agriculture, tertiary industry, artificial forest and grass ecology in the middle reaches of Heihe River in current year, 2020 and 2030; water demand for living, industry, tertiary industry and ecology in Ejina Banner in the middle reaches of Heihe River in current year, 2020 and 2030)
JIANG Xiaohui
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao barren-land station between 9 July, 2013, and 31 December, 2013. The site (101.133° E, 41.999° N) was located on a barren-land surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 878 m. The installation heights and orientations of different sensors and measured quantities were as follows: four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (SI-111; 24 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), and soil temperature profile (AV-10T; 0, -0.02 and -0.04 m). The observations included the following: four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), and soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data were missing during 24 September, 2013 and 26 September, 2013 because of the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 from jingyangling station, upstream of heihe hydrometeorological observation network.The station is located in jingyangling pass, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160e, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The four-component radiation occurred between June 12, 2014 and June 30, 2014. Due to the problem of collector extension board, data was missing.Soil temperature was between June 12, 2014 and June 14, 2014. Due to data collector problem, data was missing.Loss of wind speed due to sensor problem;The surface radiation temperature is between 9.2 and 10.23, and the data is missing due to the problem of collector extension board.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains meteorological element observation data from January 1, 2015 to December 31, 2015 from dashang station, upstream of heihe hydrometeorological observation network.The station is located in shalantan, west of qilian county, qinghai province.The latitude and longitude of the observation point is 98.9406e, 38.8399n and 3739m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried in the ground 6cm underground and 2m to the south of the weather tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set includes the eddy correlation data of Shenshawo Desert Station in the middle reaches of Heihe Hydrometeorological Observation Network from January 1, 2015 to April 12, 2015. The site is located in Zhangye City, Gansu Province, and the underlying surface is desert. The latitude and longitude of the observation point is 100.49330E, 38.78917N, and the altitude is 1594.00m. The height of eddy correlator is 4.6 m, the sampling frequency is 10 Hz, the ultrasonic orientation is positive north, and the distance between the ultrasonic wind speed thermometer (CSAT3) and the CO2/H2O analyzer (Li7500) is 15 cm. The original observation data of the eddy correlation meter is 10 Hz, and the released data is 30-minute data processed by Eddypro software. The main steps of the processing include: outlier removal, time-lag correction, coordinate rotation (double rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. At the same time, the quality evaluation of each flux value is conducted, it mainly contains atmosphere state stability test(Δst) and integrated turbulence characteristic test(ITC). The 30-min flux value output by Eddypro software was also screened: (1) data from the instrument error was eliminated; (2) data 1 h before and after precipitation was removed; (3) data from the deletion rate greater than 10% within every 30 min of the 10 Hz raw data. (4) eliminating observation data of weak turbulence at night (u* less than 0.1 m/s). The average time period of observation data is 30 minutes, 48 data per day, and the missing data is labeled -6999. Abnormal data caused by instrument drift and other reasons are marked in red. Published observations include: date/time Date/Time, wind direction Wdir(°), horizontal wind speed Wnd(m/s), lateral wind speed standard deviation Std_Uy(m/s), ultrasonic virtual temperature Tv(°C), water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar (m/s), Obukhov length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average of 0:00-0:30; the data is stored in *.xls format. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2015 to December 31, 2015 from jingyangling station, upstream of heihe hydrometeorological observation network.The station is located in jingyangling pass, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160e, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The distributed eco hydrological model needs high-precision precipitation spatial distribution information as input. Due to the scarcity of stations, the station interpolation precipitation can not reflect the spatial distribution of precipitation in Heihe mountain area. The regional climate model (RCM) simulation results provide the information of precipitation elevation relationship at different locations. The relationship is corrected according to the observed precipitation elevation gradient of hulugou watershed, and the precipitation elevation gradient at different locations of the watershed is obtained. Based on the gradient and the multi-year average value of precipitation observed at the station, the precipitation climate background field is established to represent the multi-year average spatial distribution of precipitation in the basin. Then, based on the daily precipitation observation data of 16 meteorological stations and 25 hydrological stations, and the precipitation spatial distribution information provided by the precipitation climate background field, the daily grid precipitation data is obtained by interpolation. The interpolation year of this data is 1960-2014, the spatial interpolation precision is 3-km, and the time precision is day by day data (the daily period is from 8:00 a.m. to 8:00 a.m. the next day). The results show that the interpolation precipitation is reliable. The data is stored in ASCII file. The file name of each file is in the form of precyyyymmdd.asc. Yyyy is the year, mm is the month and DD is the day. Each ASCII file represents the grid precipitation data of the day, in mm.
YANG Dawen
This data set contains the observation data of vortex-correlograph in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Li7500A of the eddy current system was calibrated from April 12 to 14, and data was missing. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains meteorological observation data of zhangye wetland station in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The site is located in zhangye national wetland park in gansu province.The latitude and longitude of the observation point is 100.4464E, 38.9751N, and altitude is 1460m.Air temperature and relative humidity sensors are set up at 5m and 10m, facing due north.The barometer is installed at 2m;The inverted bucket rain gauge is installed at 10m;The wind speed sensor is set up at 5m and 10m, and the wind direction sensor is set up at 10m, facing due north.The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm and 40cm underground, in the south due to 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm;Four photosynthetic radiometers are installed above and inside the canopy respectively. The upper part of the canopy is installed at 6m (one probe vertically up and one probe vertically down), and the upper part of the canopy is installed at 0.25m (one probe vertically up and one probe vertically down), facing due south. Observation items are: air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Degrees Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm) (unit: c), the canopy on the up and down photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2) and up and down under canopy photosynthetic active radiation (PAR_D_up, PAR_D_down) (unit: second micromoles/m2). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-6-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the data of meteorological element gradient observation system of alou superstation, upstream of heihe hydrometeorological observation network, from January 1, 2015 to December 31, 2015.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The air temperature, relative humidity and wind speed sensors are located at 1m, 2m, 5m, 10m, 15m and 25m respectively, with a total of six layers facing due north.The wind direction sensor is located at 10m, facing due north;The barometer is installed at 2m;The tilting bucket rain gauge is installed on the observation tower 40m of super aru station;The four-component radiometer is installed at 5m, facing due south;Two infrared thermometers are installed at 5m, facing due south, and the probe facing vertically downward.The photosynthetic effective radiometer is installed at 5m, facing due south, and the probe facing vertically upward.Part of the soil sensor is buried at 2m in the south direction of the tower body, and the soil heat flow plate (self-correcting formal) (3 pieces) are all buried at 6cm underground.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at the surface of 0cm and underground of 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm, among which the 4cm and 10cm layers have three repeats.The soil water sensor is buried underground 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm respectively, among which the 4cm and 10cm layers have three duplexes. The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Soil temperature and humidity, soil heat flux between September 9, 2015 to September 19, 2015 and September 30, 2015 to October 20, 2015 due to power supply problems, data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the data of meteorological element gradient observation system of the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The wind speed and direction of 3m and 5m were missing due to sensor problems between November 16 and November 25, 2015;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set includes the river level observation data of point 2 in the dense runoff observation of the middle reaches of Heihe River from January 1, 2015 to December 31, 2015. The observation point is located in Heihe bridge, 312 National Road, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n38.996667 °, e100.427222 °, altitude 1485m, river width 70m and 20m. Sr50 ultrasonic range finder is used for water level observation, with acquisition frequency of 30 minutes. The data includes the following parts: Water level observation, observation frequency 30 minutes, unit (CM); In 2015, the section of bridge no.2-312 was frequently disturbed by human beings. The dam was built within 1km of the upstream and downstream of the section. The unstable area of the hydrological section led to the disorder of the water level and flow curve. During the measurement, the stable flow and water level curve could not be obtained. The observation of water level is based on the manual observation of water level at 0:00 on January 1, 2015. In the later stage, the hydrological section of river undercut changes. The result is that the datum water level changes and negative value appears; Refer to Li et al. (2013) for hydrometeorological network or station information, and he et al. (2016) for observation data processing
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
The data set contains cosmic ray instrument (CRS) observations from January 1, 2015 to December 31, 2015.The station is located in dachman super station, dachman irrigation district, zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and SW (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selected dry wet condition are the obvious difference of June 26-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm the three values of average as calibration data, the change range of 22% to 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, LI Xin, XU Ziwei
The data set contains the flux observation data of large aperture scintillator from daman station in the middle reaches of heihe hydrometeorological observation network.Large aperture scintillators of BLS450 and BLS900 models were installed at daman station in the middle reaches of China. The north tower was the receiving end of BLS900 and the transmitting end of BLS450, and the south tower was the transmitting end and the receiving end of BLS900.The initial observation time of BLS450 is from January 1, 2015 to April 14, 2015, and the observation time of another BLS450 is from June 12, 2015 to December 31, 2015.BLS900 was observed from May 1, 2015 to December 31, 2015.The station is located in dazman irrigation district, zhangye city, gansu province.The latitude and longitude of the north tower is 100.379 E, 38.861 N, and the latitude and longitude of the south tower is 100.369 E, 38.847 N, with an altitude of about 1556m.The effective height of the large aperture scintillator is 22.45m, the optical diameter length is 1854m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (Cn2 e-13 > 1.43);(2) data with weak demodulation signal strength (BLS450: Mininum X Intensity< 50 (2015.1.1-2015.4.14) and Average X Intensity<1000 (2015.6.12-2015.12.31) were excluded.BLS900: Average X Intensity<1000);(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, the stability universal function of Thiermann and Grassl(1992) was selected. Please refer to Liu et al(2011, 2013) for detailed introduction. Some notes on the released data :(1) the middle LAS data is mainly BLS900, the missing time is supplemented by BLS450 observation, and the missing time of both is marked with -6999.4.14-5.1 due to instrument deployment, data is missing.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2015 to April 16, 2015 from huangzangsi station, upstream of heihe hydrometeorological observation network.The station is located in huangzangsi village, babao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.1918E, 38.2254N and 2612m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Air temperature is between 1.1-1.6 and 2.7-3.12, and data is missing due to sensor problems.The soil temperature of 0cm is between 1.3-1.12 and 1.22-4.16, and data is missing due to sensor problems.The temperature of 10cm soil is between 4.5-4.16, and data is missing due to sensor problems.The station was demolished after April 16;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains eddy correlator observation data of huazhaizi desert station in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in zhangye city, gansu province.The longitude and latitude of the observation point are 100.31860E, 38.76519N/100.3201E, and 38.7659N(after May 2), with an altitude of 1731.00m.The frame height of the vortex correlator is 2.85m (before 12 April) /4.5m(after 2 May), the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic anumometer (CSAT3) and the CO2/H2O analyzer (Li7500/Li7500A(after 2 May)) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.On April 12, solstice and May 2, data was missing due to the calibration and instrument replacement of vortex correlator Li7500. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological observation data of the downstream desert station of heihe hydrometeorological observation network from May 2, 2015 to December 31, 2015. The station is located at the ejin banner desert beach in Inner Mongolia, and the underlying surface is desert.The longitude and latitude of the observation point are 100.9872e, 42.1135n and 1054m above sea level.Air temperature and relative humidity sensors are set at 5m and 10m, facing due north;The barometer is installed at 2m;The tilting bucket rain gauge is installed at 10m;The wind speed sensor is set at 5m and 10m, and the wind direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried 6cm underground. Observation projects are: air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage), and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Soil heat flux 1 data was missing between May 11, 2015 and 6.6 due to sensor problems;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The No. 1 hydrological section is located at 213 Heihe River Bridge (100.345° E, 38.912° N, 1546 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.1 hydrological section from 13 June, 2012, to 6 September, 2013. This section consists of two river sections, i.e., the east section,which is denoted as No. 1 and the west section, which is denoted as No. 2. The width of this section is 330 meters and consists of a gravel bed; the cross-sectional area is unstable because of human factors. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
The data set contains the vortex correlator observation data of sidaqiao superstation in the downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the fourth bridge of ejin banner in Inner Mongolia, tamarisk is the underlying surface.The latitude and longitude of the observation point is 101.1374e, 42.0012n, and the altitude is 873 m.The height of the vortex correlation instrument is 8m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A, Li7500 after April 25) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.From April 22 to 25, data was missing due to the calibration of Li7500 of vortex system.Suspicious data caused by instrument drift shall be identified in red. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlativity observation data of the euphrate poplar forest station downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in Inner Mongolia ejin banner four bridge, under the surface is the euphorbia poplar forest.The longitude and latitude of the observation point are 101.1236e, 41.9928n and 876m above sea level.The rack height of the vortex correlativity instrument is 22m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.2m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.On April 22, solstice and April 25, data was missing due to the calibration of the vortex system Li7500.August 17 solstice September 5, due to memory card problems, resulting in intermittent data. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the vortex correlativity data of zhangye wetland station in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to September 25, 2015.The site is located in zhangye city, gansu province.The latitude and longitude of the observation point is 100.44640E, 38.97514N, and the altitude is 1460.00m.The height of the vortex correlation instrument is 5.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (Gill) and the CO2/H2O analyzer (Li7500A) is 25cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, Angle correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.The suspicious data caused by instrument drift and other reasons are marked in red. The vortex system Li7500A was calibrated on April 12, 2015, solstice, May 1, 2015, and the data is missing.After September 26, there were many errors in the data due to problems in the power supply and Li7500A. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2015 to December 31, 2015 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water probe is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the sensor problem, the data of wind speed was partly missing between September 28 and November 8, 2015;Infrared temperature 1 data missing between 4.28 and 5.23 due to sensor problem;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data of huazhaizi desert station in the middle reaches of heihe hydrological meteorological observation network from January 18, 2015 to December 31, 2015.The station is located in huazhaizi, zhangye city, gansu province.Huazhaizi station is equipped with observation instruments from Beijing normal university (longitude and latitude is 100.3201E, 38.7659N) and Cold and Arid Regions Environmental and Engineering Research Institute (longitude and latitude is 100.3186E, 38.7652N), with an altitude of 1,731m.The observation instrument of Beijing normal university has been installed since June 11, 2015. Specifically, the air temperature and relative humidity sensors are installed at 5m and 10m, facing due north.Install the barometer inside the waterproof box;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 5m and 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried 6cm underground.The observation instruments set up by Cold and Arid Regions Environmental and Engineering Research Institute are as follows: the wind speed sensor is set up at a height of 0.48m, 0.98m and 2.99m, with a total of three layers, facing north;The wind direction sensor is mounted at a height of 4m;Air temperature and relative humidity sensors are located at 1m and 2.99m respectively, with a total of 2 layers, facing north by east.The installation height of the four-component radiometer is 2.5m, facing due south;The air pressure sensor is placed in the waterproof box;The installation height of the tilting bucket rain gauge is 0.7m;The soil temperature probe is buried at depths of 4cm, 10cm, 18cm, 26cm, 34cm, 42cm and 50cm underground.The soil moisture sensors were buried underground 2cm, 10cm, 18cm, 26cm, 34cm, 42cm, 50cm and 58cm, respectively, with 3 repetitions buried in 2cm.Specific observation items are as follows: (1) observation items of Beijing normal university : air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit:Volume moisture content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius). (2) observation items of Cold and Arid Regions Environmental and Engineering Research Institute : wind speed (WS_0. 48 m, WS_0. 98 m, WS_2. 99 m) (unit: m/s), wind (WD_4m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor) (unit: watts per square meter), air temperature and humidity (Ta_1m, Ta_2. 99 m, RH_1m, RH_2 99 m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit:Mm), soil temperature (Ts_4cm, Ts_10cm, Ts_18cm, Ts_26cm, Ts_34cm, Ts_42cm, Ts_50cm) (unit: Celsius), soil moisture (Ms_2cm_1, Ms_2cm_2, Ms_2cm_3, Ms_10cm, Ms_18cm, Ms_26cm, Ms_34cm, Ms_42cm, Ms_50cm, Ms_58cm) (unit: volumetric water content, percentage). The observed elements of Beijing normal university were the mean value of 10min, and those of Cold and Arid Regions Environmental and Engineering Research Institute were the mean value of 30min. Processing and quality control of observation data :(1) ensure 144 observation data elements of Beijing normal university every day (every 10min); Ensure the observed elements of Cold and Arid Regions Environmental and Engineering Research Institute are 48 data per day (every 30min). If the data is missing, it will be marked by -6999.Due to the problem of the wind speed sensor, the 10m wind speed observed by Beijing normal university was missing between June 21-7.09, 2015 and December 16-12.25.Due to the problem of data storage, the precipitation observed by Cold and Arid Regions Environmental and Engineering Research Institute is missing between 1.18 and 1.22.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the meteorological element observation system data from January 1, 2015 to December 31, 2015 of the naked earth station downstream of heihe hydrometeorological observation network.The station is located in Inner Mongolia ejin banner dalaihubu town four road bridge, the underlying surface is bare ground.The longitude and latitude of the observation point are 101.1326e, 41.9993n and 878m above sea level.The four-component radiometer is installed at 6m, facing due south;Two infrared surface thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 2cm and 4cm underground, 2m to the south of the meteorological tower.The soil moisture sensor is buried 2cm and 4cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Radiation observation projects are: four components (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil moisture (Ms_2cm, Ms_4cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm Ts_2cm Ts_4cm) (unit: degrees c). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The four-component long-wave radiation occurred between April and July 26, 2015 due to sensor problems, data was missing;The soil heat flux was adjusted on June 5 and then decreased.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the data of meteorological gradient observation system of sidaqiao superstation downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the four Bridges of dalaihubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1374e, 42.0012n, and 873m above sea level.Air temperature, relative humidity and wind speed sensors are installed at 5m, 7m, 10m, 15m, 20m and 28m, with a total of 6 layers, facing due north.The wind sensor is installed at 15m, facing due north;The barometer is installed in the waterproof box;Dump-type rain gauge installed at 28m;The four-component radiometer is installed at 10m, facing due south;The two infrared thermometers are installed at 10m, facing due south, and the probe is facing vertically down.The two photosynthetic effective radiometers are installed at a location of 10m, facing due south, with the probes pointing vertically up and down, respectively.Part of the soil sensor is installed at 2m to the south of the tower body, in which the soil heat flow plate (self-calibration formal) (3 pieces) is successively buried at 6cm underground;The average soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground.The soil moisture sensors were embedded in the ground at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The observation items are: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), up and down the photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;Infrared temperature 1 between February 11, 2015 and April 25, 2015 due to sensor problems, data is missing;The soil temperature of 4cm was between October 8, 2015 and October 29, 2015. Due to sensor problems, the data was missing.(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains data of meteorological elements observation system of farmland station downstream of heihe hydrometeorological observation network from January 1, 2015 to October 29, 2015.The station is located at sidao bridge, dalai hubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1338e, 42.0048n, and 875m above sea level.The four-component radiometer is installed at 6m, facing due south;The two infrared thermometer sensors are installed at the position of 6m, facing south, and the probe is facing vertically downward.The two photosynthetic radiometers are installed at the position of 6m, facing due south, and the probes are vertically up and down in one direction.The soil temperature probe is buried at 0cm on the surface, 2cm and 4cm underground, and 2m to the south of the meteorological tower.The soil moisture sensors are respectively buried 2cm and 4cm underground, in the south due to 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm away from the weather tower 2m due south. Radiation observation projects are: four components (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm) (unit: c), soil moisture (Ms_2cm, Ms_4cm) (unit:Volume water content, percentage), up and down photosynthetic effective radiation (PAR_up, PAR_down) (unit: micromole/m s). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;Due to data storage problems, data was missing from September 25 to October 01, 2015;Soil heat flux of 3 and 0cm soil temperature was missing between 6.14-6.22 due to sensor problems.Due to sensor problems, the soil temperature of 0cm occasionally appeared problems between 6.09 and 9.22.Soil heat flux 2 was missing between 10.17 and 10.29 due to sensor problems.(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the vortex correlator observation data of the farmland station downstream of heihe hydrometeorological observation network from January 1, 2015 to November 5, 2015.The station is located in the four Bridges of ejin banner in Inner Mongolia.The latitude and longitude of the observation point are 101.1338e, 42.0048n, and 875m above sea level.The height of the vortex correlation instrument is 3.5m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift shall be identified in red.On April 21, solstice, June 22, the instrument was being replaced, during which the data was missing, and the station was dismantled on November 5. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains meteorological observation data of E’bao station upstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in qinghai qilian county E’bao town grassland, the underlying surface is alpine grassland.The latitude and longitude of the observation point are 100.9151E, 37.9492N, and 3294m above sea level.The air temperature and relative humidity sensors are set up at 5m, facing due north.The barometer is installed in an anti-skid box on the ground;The inverted bucket rain gauge is installed at 10m;Wind speed and direction sensors are set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, in the south due to 2m from the meteorological tower.The soil moisture probe is buried 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, directly to the south of 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm, in the south due to 2m from the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;The four-component radiation and infrared temperature were between October 11, 2015 and November 05, 2015.11.1-11.5 re-adjustment of observation tower instruments, data missing;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The No. 2 hydrological section is located at 312 Heihe River Bridge (100.411° E, 38.998° N, 1485 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.2 hydrological section from 19 June, 2012, to 31 December, 2013. This section consists of two river sections, i.e., the east section, which is denoted as No. 1 and the west section, which is denoted as No. 2. The width of this section is 90 meters and consists of a gravel bed; the cross-sectional area is unstable because of human factors. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
The data set contains eddy covariance System observation data of Barren-land Station which is located in the lower reaches of the Heihe Hydro-meteorological Observation Network from January 1, 2015 to December 31, 2015. The site is located in Sidaoqiao, Ejina Banner, Inner Mongolia, and the underlying surface is barren land. The latitude and longitude of the observation point is 101.1326E, 41.9993N, and the altitude is 878m. The mount height of the Eddy Covariance System is 3.5 m, the sampling frequency is 10 Hz, the ultrasonic orientation is north, and the distance between the ultrasonic wind speed temperature meter (CSAT3) and the CO2/H2O analyzer (Li7500) is 15 cm. The original observation data of the Eddy Covariance System is 10 Hz, and the released data is a 30-minute data processed by Eddypro software. The main steps of the processing include: outlier eliminating, delay time correction, coordinates rotation (secondary coordinates rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. Meanwhile, the quality evaluation of each flux value was performed,mainly includes atmospheric stability (Δst) test and turbulence similarity (ITC) test. The 30-min flux value output of Eddypro software was also screened: (1) Data from the instrument error was eliminated; (2) Data obtained with one hour before and after precipitation was removed; (3) Data with a deletion rate greater than 10% of the 10 Hz raw data every 30 minutes was eliminated; (4) Observation data of weak turbulence at night (u* less than 0.1 m/s) was excluded. The average period of observation data is 30 minutes, 48 data per day, and the missing data is marked as -6999. The data was missing due to Li7500 calibration of the eddy system on April 7 and 8; the suspicious data caused by instrument drift and other reasons was marked by red fonts. Published observation data include: date/time Date/Time, wind direction(°), horizontal wind speed(m/s), lateral wind speed standard deviation(m/s), ultrasonic virtual temperature (°C), water vapor density (g/m3), carbon dioxide concentration(mg/m3), friction velocity (m/s), length (m), sensible heat flux(W/m2), latent heat flux (W/m2), carbon dioxide flux (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average data of 0:00-0:30; the data is stored in *.xls format. For hydro-meteorological network or station information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.Two groups of LAS (BLS900_1 and BLS900_2) were along the northeast to southwest direction, with an effective height of 25.5m and a light diameter length of 2390m and 2380m, respectively. The observation time was from January 1 to April 24, 2015 and from February 11 to December 31, 2015, respectively.On April 25, 2015, LAS (bls900-1 dismantled, bls900-2 placed in the original BLS900_1 transmitting tower and BLS900_2 receiving tower) were adjusted into a group, with an effective height of 25.5m and a light diameter length of 2350m.The site is located in ejin banner, Inner Mongolia, with tamarix chinensis, populus populus, bare land and cultivated land under it.The latitude and longitude of the north tower of point 1 is 101.147e, 42.005n, and that of the south tower is 101.131e, 41.987n.The latitude and longitude of the north tower at point 2 is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.121e, 41.990 N, with an altitude of about 873m.The sampling frequency of large aperture scintillator is 1min. Large aperture flicker meter raw observation data for 1 min, published data after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS900_1: Cn2 > 7.25 e-14, BLS900_2: Cn2 > 7.33 E - 14, adjusted BLS900: Cn2 > 7.58 e-14);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).During the iterative calculation, the stability universal function of Thiermann and Grassl(1992) was selected.Please refer to Liu et al(2011, 2013) for detailed introduction. Some notes on the released data :(1) during the simultaneous observation of two LAS, LAS data at downstream point 1 is mainly BLS900_1, and the missing time is marked by -6999;LAS data of downstream point 2 is mainly BLS900_2, and the missing moment is marked by -6999.After April 25, the downstream LAS data was observed as BLS900_2, and the missing time was marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2015 to September 9, 2015 from the aruyangpo station, upstream of heihe hydrometeorological observation network.The station is located in yangpo, north of ahrou township, qilian county, qinghai province.The latitude and longitude of the observation point is 100.5204E, 38.0898N and 3529m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;Two photosynthetically active radiators were installed at 6m, facing due south, and one probe was vertically upward and downward.The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the damage of wind direction sensor, data was missing between July 2015 and September 2015;The station was demolished after September 9;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains meteorological element observation data of heihe remote sensing station in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the east of dangzhai town, zhangye city, gansu province.The longitude and latitude of the observation point are 100.4756e, 38.8270n and 1560m above sea level.The air temperature and humidity sensor is located at 1.5, facing due north.The barometer is in the waterproof box;The tilting bucket rain gauge is installed at 0.7 m;The wind speed and direction sensor is located at 10m, facing due north;The installation height of the four-component radiometer is 1.5m, facing due south;The installation height of the two infrared thermometers is 1.5m, facing due south and the probe facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground.The soil water probe was buried at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm.Average soil temperature probes were buried in 2cm and 4cm;The soil heat flow plate (3 pieces) is buried 6cm underground.Two photosynthetically active radiometers were set up 1.5m above the canopy (one probe vertically upwards and one probe vertically downwards), facing due south.Steam dishes were also observed (E601B, diameter 61.8cm). Observation projects are: air temperature and humidity (Ta_1. 5 m, RH_1. 5 m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (in:Degrees Celsius), soil moisture (Ms_0cm Ms_2cm Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: c), up and down photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), the evaporating dish in the depth of the water, the depth (unit: mm). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Data missing due to power supply problems;Due to collector problem, many observation elements have more error values;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data of baji tan gobi station in the middle reaches of heihe hydrological meteorological observation network from January 1, 2015 to April 13, 2015. The station is located at baji beach, chengxiye city, zhangye city, gansu province, and the underlying surface is gobi.The longitude and latitude of the observation point are 100.3042e, 38.9150n and 1562m above sea level.Air temperature and relative humidity sensors are set at 5m and 10m, facing due north;The barometer is installed at 2m;The tilting bucket rain gauge is installed at 10m;The wind speed sensor is set at 5m and 10m, and the wind direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried 6cm underground. Observation projects are: air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage), and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name.The station will be demolished after April 13. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the data of thermal diffusion fluid flow meter in the hydrometeorological observation network from January 1 to December 31, 2015. The study area is located in huyang forest, ejin banner, alxa league, lower reaches of heihe, Inner Mongolia autonomous region.According to the different height and diameter at breast height of iminqak, choose install Thermal diffusion flow meter sample tree (Thermal Dissipation SAP flow velocity Probe, TDP), domestic TDP pin type Thermal diffusion plant flow meter, model for TDP30.The TDP1 point and TDP2 point of sample plots were set in the vicinity of mixed forest station and populus populus station, respectively.Sample tree height from high to low in turn for TDP2 (16.4 meters, 18.3 meters, 16.9 meters), TDP1 (12.5 meters, 13 meters, 14 meters), diameter at breast height order from large to small is TDP1 (48 cm, 41.6 cm, 46.6 cm), TDP2 (33.8 cm, 38.5 cm, 42.3 cm), density of TDP1 respectively (0.0158 per square meter) tree, TDP2 (0.0116 per square meter), to represent the whole area of populus euphratica transpiration measurement.Two sets of probes are installed in each sample tree, with a height of 1.3 meters and a direction of east and west of the sample tree. The original observation data of TDP is the temperature difference between the probes, and the collection frequency is 10s, with an average output of 10 minutes.The published data are calculated and processed trunk flow data, including flow rate V (cm/h), flux Fs (cm3/h) and daily transpiration Q (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Qiao et al. (2015) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlation-meter observation data of the mixed forest station downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in Inner Mongolia ejin banner four road bridge, under the surface is populus and tamarix.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874 m above sea level.The frame of the vortex correlative is 22m high, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500 before April 22 and EC150 after April 26) is 17cm/0cm (after April 26). The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.2m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.January 22 - February 11 data error due to collector problem;April 22 solstice April 26 due to instrument replacement, data missing;June 5th solstice June 9th data was missing due to memory card problem.Suspicious data caused by instrument drift, etc., are identified in red font.When 10Hz data is missing due to a problem with the memory card storage data (9.07-11.08), the data is replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set includes observation data of meteorological elements in the Shenshawo Desert Station in the middle of the Heihe Hydrometeorological Observation Network from January 1, 2015 to April 12, 2015. The site is located in Shenshawo, Zhangye City, Gansu Province, and the underlying surface is desert. The latitude and longitude of the observation point is 100.4933E, 38.7892N, and the altitude is 1594m. The air temperature and relative humidity sensors are installed at 5m and 10m, facing the north; the barometer is installed at 2m; the tipping bucket rain gauge is installed at 10m; the wind speed sensor is set at 5m, 10m, and the wind direction sensor is set at 10m, facing the north; the four-component radiometer is installed at 6m, facing south; two infrared thermometers are installed at 6m, facing south, the probe orientation is vertically downward; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower, and among them a repetitive soil moisture sensor (Ms_40cm_2) was embedded in the underground 40cm on May 6, 2014.soil heat flux plates (3 pieces) are buried in the ground 6 cm in order. Observation items include: air temperature and humidity (Ta_5m, RH_5m, Ta_10m, RH_10m) (unit: centigrade, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m / s), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts / square meter), surface radiation temperature (IRT_1, IRT_2 ) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From March 19, 2015 to March 26, due to the collector problem, the data is missing; (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2015-6-10 10:30; (6) the naming rules are: AWS+ site name. The station was dismantled after April 12. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the observation data of the eddy covariance system of the desert station, which is located along the lower reaches of the Heihe Hydro-meteorological observation network, and the data set covers data from April 28, 2015 to December 31, 2015. The station is located in Ejina Banner, Inner Mongolia, and the underlying surface is desert. The latitude and longitude of the observation station is 100.9872E, 42.1135N, and the altitude 1054m. The height of the eddy covariance system is 4.7 meters, the sampling frequency is 10Hz, the ultrasonic orientation is positive north, and the distance between the ultrasonic wind speed and temperature monitor (CSAT3) and the CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the eddy covariance system is 10 Hz, and the released data is a 30-minute data processed by Eddypro software. The main steps of the processing include: outlier eliminating, delay time correction, coordinates rotation (secondary coordinates rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. Meanwhile, the quality evaluation of each flux value was performed,mainly includes atmospheric stability (Δst) test and turbulence similarity (ITC) test. The 30-min flux value output of Eddypro software was also screened: (1) Data from the instrument error was eliminated; (2) Data obtained with one hour before and after precipitation was removed; (3) Data with a deletion rate greater than 10% of the 10 Hz raw data every 30 minutes was eliminated; (4) Observation data of weak turbulence at night (u* less than 0.1 m/s) was excluded. The average period of observation data is 30 minutes, 48 data per day, and the missing data is marked as -6999. The suspicious data caused by instrument drift and other reasons was marked by red fonts. Published observation data include: Date/Time, wind direction(°), horizontal wind speed(m/s), lateral wind speed standard deviation(m/s), ultrasonic virtual temperature (°C), water vapor density (g/m3), carbon dioxide concentration(mg/m3), friction velocity (m/s), length (m), sensible heat flux(W/m2), latent heat flux (W/m2), carbon dioxide flux (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average data of 0:00-0:30; the data is stored in *.xls format. For hydro-meteorological network or station information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the Bajitan Gobi desert station between 21 September, 2012, and 31 December, 2013. The site (100.304° E, 38.915° N) was located on a Gobi desert surface in the Bajitan, which is near Zhangye city, Gansu Province. The elevation is 1562 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (010C; 5 and 10 m, north), wind direction profile (020C; 10 m, north), air pressure (PTB110; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates, -0.06 m, 2 m in the south), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1 m), and soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the automatic weather station (AWS) measurements from site No.14 in the flux observation matrix from 6 May to 21 September, 2012. The site (100.35310° E, 38.85867° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1570.23 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45D; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (034B; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
This data set contains the data of meteorological element gradient observation system of dashman superstation in the middle reaches of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Non-soil data (wind speed, wind direction, air temperature and humidity, air pressure, precipitation, four-component radiation, surface radiation temperature and photosynthetically active radiation) were missing between June 20, 2014 and June 27, 2014 due to the data collector.The wind speed and direction of 3m were between January 17th, 2014 -- January 21st, 2014 and February 10th, 2014 -- February 2nd, 2014.5m wind speed and direction between 2014.2.10-3.2due to sensor problems, data is missing;The soil temperature was between October, 2014 and December, 2014. Due to the problem of the data collector, the data was missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2014-6-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the vortex correlativity observation data of sidaqiao superstation in the downstream of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The station is located in the fourth bridge of ejin banner in Inner Mongolia, tamarisk is the underlying surface.The latitude and longitude of the observation point is 101.1374e, 42.0012n, and the altitude is 873 m.The height of the vortex correlativity instrument is 8m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift shall be identified in red. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Liu et al.(2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the vortex correlator observation data of zhangye wetland station in the middle reaches of heihe meteorological observation network from January 15, 2014 to December 31, 2014.The site is located in zhangye city, gansu province.The latitude and longitude of the observation point is 100.44640E, 38.97514N, and the altitude is 1460.00m.The height of the vortex correlation instrument is 5.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (Gill) and the CO2/H2O analyzer (Li7500A) is 25cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, Angle correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked in red. Among them, the memory card error occurred from January 1, 2014 to January 15, 2014, during which the data is missing. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Liu et al.(2011) for observation data processing.
LIU Shaomin, LI Xin, XU Ziwei, CHE Tao, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from site No.11 eddy covariance system (EC) in the flux observation matrix from May 29 to September 18, 2012. The site (100.34197° E, 38.86991° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1575.65 m. The EC was installed at a height of 3.5 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
This data set contains the eddy correlativity observation data from January 19, 2014 to December 31, 2014 of the super station at the upper reaches of heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font, in which data is missing from January 1 to January 18 due to collector damage. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water probe is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the data collector, part of the data was missing between 2014.5.9-6.8 and 2014.11.9-12.7.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlativity observation data of huazhaizi desert station in the middle reaches of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The station is located in zhangye city, gansu province.The longitude and latitude of the observation point are 100.31860E, 38.76519N and 1731.00m above sea level.The rack height of the vortex correlativity meter is 2.85m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.March 1 solstice on March 31, 10Hz data was missing due to a problem with the memory card storage data, which was replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.1 in the flux observation matrix. There were two types of LASs at site No.1: German BLS900 and China zzlas. The observation periods were from 7 June to 19 September, 2012, and 16 June to 19 September, 2012, for the BLS900 and the zzlas, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of zzlas, and the south tower is placed with the transmitter of BLS900 and the receiver of zzlas. The site (north: 100.352° E, 38.884° N; south: 100.351° E, 38.855° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 3256 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>3.05E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; zzlas: Demod<-40 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the zzlas. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 at the aruyinpo station, upstream of heihe hydrometeorological observation network.The station is located in the south of ahrou township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4108E, 37.9841N and 3536m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared surface thermometers were installed at 6m, facing due south, and the probe facing vertically downward;Two photosynthetically active radiators were installed at 6m, facing due south, and one probe was vertically upward and downward.The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The air temperature was between June 24, 2014 to June 28, 2014 and July 7, 2014 to August 24, 2014.Surface radiation temperature was between June 24, 2014 and July 4, 2014. Due to sensor problems, data was missing.The soil temperature was between June 24, 2014 and July 1, 2014. Due to the problem of the extension board of collector, data was missing.Due to problems in the power supply system, data was missing between December 3, 2014 and December 31, 2014.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set includes the observation data of river water level and velocity at No.2 point in the runoff densification observation of the middle reaches of Heihe River from January 1, 2014 to December 31, 2014. The observation point is located in Heihe bridge, 312 National Road, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation points are N38 ° 59 ′ 51.71 ″, E100 ° 24 ′ 38.76 ″, with an altitude of 1485 meters, and a channel width of 70 meters and 20 meters. Sr50 ultrasonic range finder is used for water level observation, with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to December 31, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The section of bridge no.2-312 is frequently disturbed by human beings, and the unstable area of hydrological section leads to the disorder of water level and flow curve. During the measurement, the stable flow and water level curve cannot be obtained. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
This dataset contains the flux measurements from the A’rou Superstation eddy covariance system (EC) in the upper reaches of the Heihe hydrometeorological observation network from 29 December, 2012, to 19 November, 2013. The site (100.464° E, 38.047° N) was located in the Alpine grassland, Caodaban village, A’rou Country, Qilian County in Qilian Province. The elevation is 3033 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3 & Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The data from 14 February to 28 February were missing due to a storage problem of CF card in the datalogger. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huazhaizi desert steppe station between 22 September, 2012, and 31 December, 2013. The site (100.319° E, 38.765° N) was located on a desert steppe surface in the Huazhaizi, which is near Zhangye city, Gansu Province. The elevation is 1731 m. There are two equipment in the site, and installed by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CAREERI) and Beijing Normal University (BNU), respectively. The installation heights and orientations of BNU were as follows: two infrared temperature sensors (SI-111; 2.65 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.2, -0.6, and -1 m), and soil moisture profile (ML2X; -0.04, -0.2 and -1 m). For the CAREERI installation: air temperature and humidity profile (HMP45C; 1, 1.99 and 2.99 m, north), wind speed profile (03102; 0.48, 0.98, 1.99 and 2.99 m, north), wind direction (03302; 4 m, north), air pressure (PTB210; in waterproof box), rain gauge (CTK-15PC; 0.7 m), four-component radiometer (CNR1; 2.5 m, south), soil temperature profile (107; -0.04, -0.1, -0.18, -0.26, -0.34, -0.42 and -0.5 m), and soil moisture profile (ML2X; -0.02, -0.1, -0.18, -0.26, -0.34, -0.42, -0.5, and -0.58 m, 3 duplicates in -0.02 m). The observations included the following: (1) infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_20 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_4 cm, Ms_20 cm and Ms_100 cm) (%). (2) air temperature and humidity (Ta_1 m, Ta_1.99 m and Ta_2.99 m; RH_1 m, RH_1.99 m and RH_2.99 m) (℃ and %, respectively), wind speed (Ws_0.48 m, Ws_0.98 m, Ws_1.99 m and Ws_2.99 m) (m/s), wind direction (WD_4 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil temperature (Ts_4 cm, Ts_10 cm, Ts_18 cm, Ts_26 cm, Ts_34 cm, Ts_42 cm and Ts_50 cm) (℃), and soil moisture (Ms_2 cm_1, Ms_2 cm_2, Ms_2 cm_3, Ms_10 cm, Ms_18 cm, Ms_26 cm, Ms_34 cm, Ms_42 cm, Ms_50 cm and Ms_58 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The BNU data were averaged over intervals of 10 min, The CAREERI data were averaged over intervals of 30 min. A total of 144 runs per day were recorded in BNU data and 48 records per day in CAREERI data. The BNU data during 30 June, 2013 and 26 July, 2013 were missing during the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the Daman superstation lower eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.372° E, 38.856° N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during 26 May to 30 May, 2013 were missing due to the sensor calibration of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the automatic weather station (AWS) measurements from Zhangye wetland station in the flux observation matrix from 25 June to 21 September, 2012. The site (100.44640° E, 38.97514° N) was located in a wetland surface, which is near Zhangye city, Gansu Province. The elevation is 1460 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed (03002; 5 m and 10 m, towards north), wind direction (03002; 10 m, towards north), a four-component radiometer (NR01; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, and -0.4 m), and soil heat flux (HFP01; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), and soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, ℃). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.There are two groups of large aperture scintillators at the downstream sidaoqiao station.On the east side (point 1), there is a large aperture scintillator of model BLS900. The north tower is the receiving end and the south tower is the transmitting end. The observation period of BLS900_1 is from March 13, 2014 to December 31, 2014.On the west side (no. 2 point), there is a large aperture scintillator of BLS900 model. The north tower is the receiving end and the south tower is the transmitting end, and the observation time of BLS900_2 is from January 1, 2014 to November 8, 2014.The station is located in ejin banner of Inner Mongolia, the underlying surface involves tamarisk, populus populus, bare land and cultivated land.The latitude and longitude of the north tower of point 1 is 101.147e, 42.005n, and that of the south tower is 101.131e, 41.987n.The latitude and longitude of the north tower at point 2 is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.121e, 41.990 N, with an altitude of about 873m.The effective height of the large aperture scintillation instrument is 25.5m, the diameter length of LAS at point 1 is 2390m, and that of LAS at point 2 is 2380m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for 30 min after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS900_1: Cn2 > 7.25 e-14, BLS900_2: Cn2 > 7.33 E - 14).(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, for BLS900, the stability universal function of Thiermann and Grassl, 1992 was selected.Please refer to Liu et al.(2011, 2013) for detailed introduction. Some notes on the released data :(1) the data of LAS point 1 in the downstream is mainly BLS900_1, and the missing moment is marked by -6999;LAS data of downstream point 2 is mainly BLS900_2, and the missing moment is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy-m-d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Liu et al.(2011) for observation data processing.
LIU Shaomin, LI Xin, XU Ziwei, CHE Tao, REN Zhiguo, TAN Junlei
This dataset contains the automatic weather station (AWS) measurements from site No.3 in the flux observation matrix from 3 June to 18 September, 2012. The site (100.37634° E, 38.89053° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1543.05 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP155; 5 m, towards north), rain gauge (TR525; 10 m), wind speed (010C; 10 m, towards north), a four-component radiometer (NR01; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04 m), soil moisture profile (CS616; -0.02, -0.04 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), precipitation (rain, mm), wind speed (Ws_10 m, m/s), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, ℃), soil moisture profile (Ms_2 cm, Ms_4 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
The data set contains the vortex correlativity data of shenshawo desert station in the middle reaches of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The site is located in zhangye city, gansu province.The latitude and longitude of the observation point are 100.49330E, 38.78917N, and 1594.00m above sea level.The height of the vortex correlation instrument is 4.6m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift shall be identified in red. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Liu et al.(2011) for observation data processing.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 from the burg station upstream of heihe hydrometeorological observation network.The station is located in caochang, qilian county, qinghai province.The latitude and longitude of the observation point is 100.9151e, 37.9492n and 3294m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The temperature of 4cm soil was between May 31, 2014 and June 17, 2014. Due to sensor problems, data was missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the observation data of vorticity correlation-meter at da-sharon station, upstream of heihe hydrometeorological observation network, from January 1, 2014 to December 31, 2014.The station is located in qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406e, 38.8399N and 3739 m above sea level.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.After October 20, 10Hz data was missing due to the data storage problem of the memory card, which was replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set includes the observation data of river water level and velocity at No. 4 point in the dense observation of runoff in the middle reaches of Heihe River from January 1 to June 25, 2014. The observation point is located in Heihe bridge, Shangbao village, Jing'an Township, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39 ° 03'53.23 ", E100 ° 25'59.31", with an altitude of 1431m and a width of 58m. In 2012, hobo pressure type water level gauge was used for water level observation with acquisition frequency of 30 minutes; since 2013, sr50 ultrasonic distance meter was used with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to June 25, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
This dataset contains the flux measurements from the Shenshawo desert station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.493° E, 38.789° N) was located in the desert surface, near Zhangye city in Gansu Province. The elevation is 1594 m. The EC was installed at a height of 4.6 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The 10 Hz data were missing during 8 December to 22 December, 2012, and data in this period were replaced with 30 min flux output by data logger. Data during 25 May to 29 May, 2013 were missing due to calibration of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes observational data of sap flow from 14 June to 21 September, 2012. The study area was located in the irrigation area within the middle reaches of the Heihe River Basin, China. Sample trees were selected for installing TDP (thermal dissipation sap flow velocity probe) instruments according to their height and diameter at breast height (DBH); only Popolusgansuensis trees were selected in this study. The TDP instrument is made in China; the model type was TDP30. There were 3 TDP observation sites, i.e., TDP-1, TDP-2 and TDP-3, which were located near the LAS4_S, EC6 and EC8 sites, respectively. The order of tree heights was TDP-2 > TDP-1 > TDP-3, and the order of DBH was TDP-2 > TDP-3 > TDP-1. At each site, 3 representative trees were selected to measure the sap flow. Three TDPs were mounted on the stem of each tree, one each for the southeast, southwest and north directions; the mounting height is 1.3 meters. Each TDP had two probes. The raw TDP data included the temperature difference between the two probes at a frequency of 30 s. The released data include the 10 minute-averaged sap flow rate (cm/h), sap flow flux (cm^3/h), and daily transpiration (mm/d). The sap flow rate and the sap flow flux were calculated according to the temperature difference between the two probes; the shelter-forest transpiration per unit area (Q) was calculated based on the area of shelterbelts and density of Popolusgansuensis trees at each site. The data preprocessing steps included the following. (1) Unphysical data were excluded. (2) Missing data were filled with -6999. (3) Suspicious data, which were most likely caused by probe failure, were marked in red; confirmed bad data were excluded. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Qiao et al. (2015) (for data processing) in the Citation section.
LIU Shaomin, LI Xin
The data set contains meteorological observation data of zhangye wetland station in the middle reaches of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The site is located in zhangye national wetland park in gansu province.The latitude and longitude of the observation point is 100.4464E, 38.9751N, and altitude is 1460m.Air temperature and relative humidity sensors are set up at 5m and 10m, facing due north.The barometer is installed at 2m;The inverted bucket rain gauge is installed at 10m;The wind speed sensor is set up at 5m and 10m, and the wind direction sensor is set up at 10m, facing due north.The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm and 40cm underground, in the south due to 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm;Four photosynthetic radiometers are installed above and inside the canopy respectively. The upper part of the canopy is installed at 6m (one probe vertically up and one probe vertically down), and the upper part of the canopy is installed at 0.25m (one probe vertically up and one probe vertically down), facing due south. Observation items are: air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Degrees Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm) (unit: c), the canopy on the up and down photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2) and up and down under canopy photosynthetic active radiation (PAR_D_up, PAR_D_down) (unit: second micromoles/m2). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2014-6-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Liu et al.(2011) for observation data processing.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the data of the meteorological element gradient observation system of the Sidaoqiao superstation downstream of the Heihe Hydrometeorological Observation Network from January 1, 2014 to December 31, 2014. The site is located in Sidaoqiao, Dalaihu Town, Ejin Banner, Inner Mongolia. The underlying surface is Tamarix. The latitude and longitude of the observation point is 101.1374E, 42.0012N, and the altitude is 873m. The air temperature, relative humidity and wind speed sensors are respectively set at 5m, 7m, 10m, 15m, 20m and 28m, with 6 layers facing the north; the wind direction sensor is set at 15m, facing the north; the barometer is installed in the waterproof box. The tipping bucket rain gauge is installed at 28m; the four-component radiometer is installed at 10m, facing south; two infrared thermometers are installed at 10m, facing south, the probe orientation is vertically downward; two photosynthetically active radiometers are installed At 10m, facing south, and the probe is vertically upward and downward respectively; the soil moisture sensor is installed 2m on the south side of the tower body, and the soil heat flow plates (self-correcting type) (3 pieces) are buried in turn in the ground 6cm deep; The average soil temperature sensor TCAV is buried in the ground 2cm, 4cm; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. Observed items include: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: centigrade, percentage), pressure (unit: hectopascal), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts/square meter), surface radiation temperature (IRT_1, IRT_2) (unit: centigrade), up and down photosynthetically active radiation (PAR_U_up, PAR_U_down) (unit: micromol/square Msec), average soil temperature (TCAV) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm) , Ms_120cm, Ms_160cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From September 8, 2014 to November 8, due to the sensor problems, the data is missing; on May 9, 2014, the soil moisture probe was re-buried, and the data before and after is inconsistent; (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2014-9-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 from huangzangsi station, upstream of heihe hydrometeorological observation network.The station is located in huangzangsi village, babao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.1918E, 38.2254N and 2612m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to sensor problems, data of soil heat flux G1 was missing between April 13-4.30, 2014 and July 23-7.31, 2014.G2 and G3 are missing from 7.23 to 7.31 due to the problem of sensor connection line;The 4cm soil moisture was lost between October 2014 and October 27, 2014 due to the connection of the sensor.The soil temperature of 0cm was between 10.5-10.27, 2014, and data was missing due to sensor problems.The air temperature experienced intermittent problems after October 10 due to sensor connection problems.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the observation data of meteorological elements from the Huazhaizi Desert Steppe Station,,which is located along the middle reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2014 to December 31, 2014. The station is located in Huazhaizi of Zhangye, Gansu Province. The underlying surface is piedmont desert. The latitude and longitude of the observation point is100.3186E, 38.7652N, and the altitude is 1731m. The observation instruments in Huazhaizi are installed respectively by Beijing Normal University and Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The observation instruments of Beijing Normal University are: two infrared thermometers installed 24 meters above the ground, facing south, with the probe vertical downward; soil temperature probes buried respectively at 0cm on the ground surface, 2cm、4cm、20cm、60cm and 100cmunder the ground; soil moisture sensors buried 4cm、20cm and 100cm under the ground; soil heat flow boards (3 pieces) buried 6cm under the ground. The observation instruments of Cold and Arid Regions Environmental and Engineering Research Institute are: wind speed sensor erected 10.48m、0.98m and 2.99m above the ground(3 layers),facing North; wind direction sensor erected 4 meters above the ground; air temperature and relative humidity sensors erected 1m and 2.99m above the ground(2 layers),facing North East; four-component radiometer installed 2.5 meters above the ground, facing South; barometric pressure sensor placed in the water-proof box; tipping bucket rain gauge installed 0.7 meter above the ground; soil temperature probes buried 4cm、10cm、18cm、26cm、34cm、42cm and 50cmunder the ground; soil moisture sensors buried 2cm、10cm、18cm、26cm、34cm、42cm、50cm and 58cm under the ground, 3 sensors buried at 2cm. The specific observation elements are as follows: (1) Observation elements of Beijing Normal University : surface radiation temperature (IRT_1, IRT_2) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil moisture (Ms_4cm, Ms_20cm, Ms_100cm) (unit: percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_20cm, Ts_60cm, Ts_100cm) (unit: Celsius). (2) Observation elements of Cold and Arid Regions Environmental and Engineering Research Institute: wind speed (WS_0.48m, WS_0.98m, WS_2.99m) (unit: m/s), wind direction (WD_4m) (unit: degree), four-component radiation (DR, UR , DLR_Cor, ULR_Cor) (unit: watt / square meter), air temperature and humidity (Ta_1m, Ta_2.99m, RH_1m, RH_2.99m) (unit: Celsius, percentage), air pressure (Press) (unit: hectopascal), precipitation (unit: mm), soil temperature (Ts_4cm, Ts_10cm, Ts_18cm, Ts_26cm, Ts_34cm, Ts_42cm, Ts_50cm) (unit: Celsius), soil moisture (Ms_2cm_1, Ms_2cm_2, Ms_2cm_3, Ms_10cm, Ms_18cm, Ms_26cm, Ms_34cm, Ms_42cm, Ms_50cm, Ms_58cm) (unit: volumetric water content, percentage). The observation elements of Beijing Normal University are 10-minute average data, and the observation elements of Cold and Arid Regions Environmental and Engineering Research Institute are 30-minute average data. Processing and quality control of observation data: (1) Ensure 144 data of Beijing Normal University per day (every 10 minutes), and 48 data of Cold and Arid Regions Environmental and Engineering Research Institute per day (every 30 minutes). If there is missing data, it is marked as -6999. Data between 12.11-12.31,2014 is missing due to storage problems. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2014-6-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao mixed forest station between 12 July, 2013, and 31 December, 2013. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 28 m, north), wind speed and direction profile (034B; 28 m, north), air pressure (AV-410BP; in tamper box), rain gauge (52203; 28 m, south), four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (IRTC3; 24 m, south, vertically downward), two photosynthetically active radiation (PQS-1; 24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m), and soil moisture profile (ML2X; install on Dec. 7, 2013, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes the observational data from 20 September, 2012, through 31 December, 2013, collected by the Cosmic-ray Soil Moisture Observation System (COSMOS), called crs, which waslocated at 100.372° E, 38.856° N and 1557 m above sea level,near the Daman Superstation in the Daman Irrigation District, Zhangye City, Gansu Province. The land cover in the footprint was a maize crop. The bottom of the probe was 0.5 m above the ground, and the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), the sample time of fast neutrons (N1ET, s), and the sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were deleted and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity exceeded 80% inside the probe box, (c) the samping durationwere less than 59 minutes or greater than 61 minutes and (d) the neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation containedin the equipment manual. 3) Calibration After the quality control and corrections were applied, the soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture recordedby SoilNET within the footprint. 4) Soil moisture computation Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation specified in the equipment manual. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Zhu et al. (2015) (for data processing) in the Citation section.
LIU Shaomin, ZHU Zhongli, LI Xin, XU Ziwei
This data set contains the eddy correlation-meter observation data from January 1, 2014 to December 31, 2014 at the lower level of the daman superstation in the middle reaches of the heihe hydrometeorological observation network.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the Daman superstation upper eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.372° E, 38.856° N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. The EC was installed at a height of 34 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.12 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during 26 May to 30 May and 13 July to 24 September, 2013 were missing due to the sensor calibration and maintained of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Hydrometeorological observation network obtained from an observation system of Meteorological elements gradient of A’rou Superstation between 14 October, 2012, and 31 December, 2013. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed profile (010C; 1, 2, 5, 10, 15 and 25 m, towards north), wind direction profile (020C; 2 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 3 duplicates, -0.06 m, 2 m in the south of tower), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day (The AWS data were averaged over intervals of 30 min before 4 December, 2012 for a total of 48 records per day). The average soil temperature, soil heat flux, soil temperature and soil moisture were missing during 30 November, 2012 and 8 December, 2012, 21 April, 2013 and 31 May, 2013 because of insufficient power supply; Wind speed in 2 m and 5 m were missing during 28 December, 2012 and 28 March, 2012 because of datalogger repairing. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the observation data of vortex correlativity instrument at yakou station, upstream of heihe hydrometeorological observation network, from January 1, 2015 to December 31, 2015.The station is located in qilian county, qinghai province.The latitude and longitude of the observation point is 100.2421, 38.0142N, and the altitude is 4148 m.The height of the vortex correlation instrument is 3.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift shall be identified in red.The eddy current correlator will be short of electricity at night in winter, resulting in the loss of data.When the 10Hz data is missing due to a problem with the storage card (1.12-3.14,10.7-12.31), the data is replaced by the 30min flux data output from the collector. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset includes 5 sub-datasets obtained from measurements in the flux observing matrix at observing site No.15 (the Daman superstation) and 13. Specifically, the sub-datasets include the following: (1) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic and flux ratio measurements from site No.15 from 27 May to 21 September in 2012, (2) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 from 27 May to 21 September 2012, (3) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic ratios at site No.13 when airborne surveys occurred, and (4) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No.13 and 15 when airborne surveys occurred, (5) a dataset that contains the ratios of evaporation and transpiration to evapotranpiration at site No.15. The experiment area was located in a corn cropland in the Daman irrigation district of Zhangye, Gansu Province, China. The positions of observing sites No.15 and 13 were 100.3722° E, 38.8555° N and 100.3785° E, 38.8607° N, respectively, with an elevation of 1552.75 m above sea level. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 were continuously measured using an in situ observation system. The system consisted of an H218O, HDO and H2O analyzer (Model L1102-i, Picarro Inc.), a CTC HTC-Pal liquid auto sampler (LEAP Technologies) and a multichannel solenoid valve (Model EMT2SD8 MWE, Valco Instruments CO. Inc.). The heights of the two intakes were 0.5 and 1.5 m above the corn canopy. The water vapor D/H and 18O/16O isotopic ratio analyzer recorded signals at 0.2 Hz; data were recorded for 2 minutes per intake. The data were block-averaged to hourly intervals. The sampling frequency of soil and xylem at site No. 15 was 1-3 days. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.13 were measured using a cold traps/mass spectrometer. The sampling frequency of atmospheric water vapor, soil water and xylem water at site No.13 was the same as that of the airborne surveys. Briefly, the Picarro analyzer measurements were calibrated during every 3 h switching cycle using a two-point concentration interpolation procedure in which the water vapor mixing ratio was dynamically controlled to track the ambient water vapor mixing ratio. Possible delta stretching effects were not considered. A schematic diagram of the Picarro analyzer and its operation principles and calibration procedure are described elsewhere in the literature (Huang et al., 2014; Wen et al. 2008, 2012). The dataset of atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Number (available record number), δD for r1 (δD for the lower intake, ‰), δD for r2 (δD for the higher intake, ‰), δ18O for r1 (δ18O for the lower intake, ‰), δ18O for r2 (δ18O for the higher intake, ‰), vapor mixing ratio for r1 (vapor mixing ratio for the lower intake, mmol/mol), vapor mixing ratio for r2 (vapor mixing ratio for the higher intake, mmol/mol), δET_D (δD of evapotranspiration, ‰), and δET_18O (δ18O of evapotranspiration, ‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; soil with male corns (F)=3; Xylem=4), δD (‰), and δ18O (‰). The dataset for the ratio of soil evaporation and transpiration to the evapotranspiration at site 15 includes the following variables: Timestamp (time, timestamp without time zone), E/ET (ratio of soil evaporation to the evapotranspiration, %), and T/ET (ratio of transpiration to the evapotranspiration, %). The mean (±one standard deviation) ratio of transpiration to evapotranspiration was 86.7±5.2% (the range was 71.3 to 96.0%). The mean (±one standard deviation) ratio of soil evaporation to the evapotranspiration was 13.3 ±5.2% (the range was 4.0 to 28.7%). The dataset of atmospheric water vapor D/H and 18O/16O isotopic ratio at site No. 13 when airborne surveys occurred includes the following variables: Timestamp1 (start time, timestamp without time zone), Timetamp2 (end time, timestamp without time zone), Height (observation height, cm), δD (‰), and δ18O (‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No. 13 and 15 when airborne surveys occurred include the following variables, Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; Xylem=4), δD (‰), δ18O (‰), and Location (observing site 13 or 15) . The missing measurements were replaced with -6999. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Wen et al. (2016) (for data processing) in the Citation section.
WEN Xuefa, LIU Shaomin, LI Xin
This data set contains the eddy correlativity observation data of the naked earth station downstream of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The station is located in Inner Mongolia ejin banner four bridge, the underlying surface is bare ground.The longitude and latitude of the observation point are 101.1326e, 41.9993n and 878m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The dataset of LAS (Large Aperture Scintillometer: BLS450, made in Germany) observations was obtained at the A'rou freeze/thaw observation station from Mar. 11 to Jul. 11, 2008. The transmitter (E100°28′16.4″, N38°03′24.3″, 11.2m) and the receiver (E100°27′25.9″, N38°02′18.1″, 11.5m) were 2390m away from each other and the operating altitude was 9.5m. The observation item was the atmospheric refractive index structural parameters (Cn2). The transmitting frequency was 5HZ and the data were output per minute. The processed data were archived in a 30 minutes cycle. The data were named after WATER_LAS_A'rou_yyyymmdd-yyyymmdd.csv (yyyymmdd-yyyymmdd for observation time). The missing data were marked "None".
LIU Shaomin, LI Xin, XU Ziwei
This data set contains cosmic ray instrument (CRS) observations from January 1, 2014 to December 31, 2014.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. The original observations of the cosmic ray instrument (CRS1000B) included: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. (1) Where m is mass water content, N is the number of fast neutrons after revision, N0 is the number of fast neutrons under dry conditions, a1=0.079, a2=0.64, a3=0.37 and a4=0.91 are constant terms. Here, the instrument was calibrated according to Soilnet soil water data in the source area of the instrument, and the relationship between soil volumetric water content (v) and fast neutrons was established according to the actual situation. In formula (1), m was replaced by v.Selected dry wet condition are the obvious difference of June 26-27 June and July 16 - July 17 four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16 - July 17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%,Finally, the average values of crs_a and crs_b, N0, were 3252 and 3597, respectively. 4) soil moisture calculation According to formula (1), the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
LIU Shaomin, ZHU Zhongli, LI Xin, XU Ziwei
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Shenshawo sandy desert station between 1 September, 2012, and 31 December, 2013. The site (100.493° E, 38.789° N) was located on a desert surface in the Shenshawo, which is near Zhangye city, Gansu Province. The elevation is 1594 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (010C; 5 and 10 m, north), wind direction profile (020C; 10 m, north), air pressure (PTB110; 2 m), rain gauge (52203; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The precipitation data were missing during 31 March, 2013 and 26 July, 2013 because of the malfunction of rain gauge. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn