Evapotranspiration monitoring is very important for agricultural water resource management, regional water resource utilization planning and sustainable development of social economy. The limitation of traditional monitoring et method is that it can't be observed in large area at the same time, so it can only be limited to the observation point. Therefore, the cost of personnel and equipment is relatively high. It can't provide the ET data of different land use types and crop types. Remote sensing can be used for quantitative monitoring of ET. the feature of remote sensing information is that it can reflect not only the macro structural characteristics of the earth's surface, but also the micro local differences. This data uses MODIS data and m-sebal model from June to September 2012 and time scale expansion scheme based on reference evaporation ratio to estimate the spatial and temporal distribution of evapotranspiration in the whole growth season of the middle reaches of Heihe River, and uses ground observation data to evaluate m-sebal model and time scale expansion scheme in detail. Its time resolution is day by day, spatial resolution is 250m, and data coverage is in the middle reaches of Heihe River, unit: mm. The projection information of the data is as follows: UTM projection, 47N.
ZHOU Yanzhao, ZHOU Jian
1. Data overview: this data set is the data set of artificial observation of frozen soil depth at Qilian station from January 1, 2011 to December 31, 2011, at 08:00 every day. 2. Data content: data content is frozen depth data set of permafrost. Frozen soil observation uses the frozen depth (length) of water poured into the rubber inner tube as a record. According to the position and length of water frozen in the permafrost buried in the soil, the frozen layer and its upper and lower limit depths are measured. In centimeters (CM), rounded to the nearest whole number. Observe once every day at 0.8 o'clock. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2981.0m
HAN Chuntan, SONG Yaoxuan, LIU Junfeng, YANG Yong, QING Wenwu, LIU Zhangwen
International literature on murray-darling river basin research is collected from SCI - E and SSCI citation databases in web of science database.Using Murray - the darling river basin related name, the name of the wetland, lake, river, name of the dam or reservoir, and Murray darling river flows through the administrative areas of name give priority to inscription for retrieval, and use the language (English) and the types of literature (articles), and Murray - the darling river basin water resources research related research direction selection, finally get the document of 1912-2012.
ZHANG Zhiqiang
First, Data Description The data includes stable hydrogen and oxygen isotope data of snow melt water, river water and soil water from July 2013 to April 2014. Second, Sampling Sites The snowmelt water sampling point is located in the middle of the third area, with a latitude and longitude of 99°53′28.004′′E, 38°13′25.781′′N, and the number of acquisitions is 3 times; The river water sampling point is located at the exit of the Hulugou Basin, with a latitude and longitude of 99°52′47.7′′E, 38°16′11′′N, and the sampling frequency is once a week; The soil water sampling point is located in the middle and lower part of the Hongnigou catchment area, with a sampling depth of 90cm and 180cm underground, and a latitude and longitude of 99°52'25.98′′E, 38°15′36.11′′N. Third, Testing Method The samples were measured by L2130-i ultra-high precision liquid water and water vapor isotope analyzer.
CHANG Qixin, SUN Ziyong
1. Data overview: This data set is eddy covariance Flux data of qilian station from January 1, 2013 to December 31, 2013. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration co2 (mg/m^3), water vapor concentration h2o (g/m^3), pressure press (KPa), etc.The data is 30min Flux data. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
1. Data overview: In 2013, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e; Latitude: 38.3n; Height: 2980 m.
CHEN Rensheng, HAN Chuntan
1、 Data Description: the data includes the content of silica in snowmelt water and soil water in hulugou small watershed from May 2013 to April 2014. 2、 Sampling location: the sampling point of snowmelt water is located near 600m below No.2 meteorological station, with ground elevation of 3514.45m, longitude and latitude of 99 ° 53 ′ 20.655 ″ e, 38 ° 14 ′ 14.987 ″ n. The sampling point of soil water is located at 300m above and below the No.2 meteorological station, with the longitude and latitude of 99 ° 53 ′ 31.333 ″ E and 38 ° 13 ′ 50.637 ″ n. 3、 Measurement method: the content of silica in the sample was measured by ICP-AES. Silicon dioxide is replaced by the value of Si in the solution.
SUN Ziyong, CHANG Qixin
1、 Data Description: from June 2012 to June 2013, the rainfall, river water and soil water in the basin were sampled and analyzed. 2、 Sampling location: rainfall sampling point is located in Qilian station of Chinese Academy of Sciences, with longitude and latitude of 99 ° 52 ′ 39.4 ″ e, 38 ° 15 ′ 47 ″ n; river water sampling point is located at the outlet of hulugou watershed, with longitude and latitude of 99 ° 52 ′ 47.7 ″ e, 38 ° 16 ′ 11 ″ n, with sampling frequency of once a week; soil water sampling point is located in the middle and lower part of hongnigou catchment, with sampling depth of 180cm underground and longitude and latitude of 99 ° 52 ′ 25.98 ″ E, 38 ° 15 ′ 36.11 ″ n, only one sample is taken. 3、 Test method: thermofisher TM flash 2000 and mat 253 gas stable isotope ratio mass spectrometer were used to measure the samples in 2012; l2130-i ultra-high precision liquid water and water vapor isotope analyzer was used to measure the samples in 2013.
SUN Ziyong, CHANG Qixin
一. data description The data included the spring flow observation data of 5 springs in the small gully basin in July 2012. 二. Sampling location The sampling point of quan 1 is xizhigou daquan, with the latitude and longitude of 99 ° 51 '23 "E, 38 ° 14' 33" N. The sampling point of spring 2 is 20 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E,38°16' 11.44" N. The sampling point of spring 3 is 80 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '52.8 "E,38°16' 11.24" N. The sampling point of spring 4 is 120 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '55.9 "E,38°16' 11.4" N. The sampling point of quan 5 is 150 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '55.9 "E,38°16' 11.5" N. 三. Test method By estimating the velocity of the spring and the cross-sectional area of the spring to estimate the size of the spring flow.
SUN Ziyong, CHANG Qixin
1、 Data Description: from May 2013 to July 2014, the observation frequency of automatic observation data is 1 time / 15 minutes. The solinst levellogger automatic water level gauge is used to observe the river water level, and the flow data is calculated through the water level flow curve. The actual flow observation is manually observed through the self-made flow weir (see the thumbnail). Due to the limited amount of manual observation data, further supplementary observation is needed to improve the water level discharge curve. 2、 Sampling location: it is located at the outlet catchment of the alluvial delta Valley, and the south side is the shrub area. A small flow weir is built. Coordinates of observation points (99 ° 52 ′ 58 ″ e, 38 ° 14 ′ 36 ″ n)
SUN Ziyong, CHANG Qixin
1. Data Description The soil temperature monitoring of the typical soil profile of Hongnigou catchment distributes in seven different depth, which are 20cm, 40cm, 60cm, 80cm, 120cm, 160cm and 200cm. The observation frequency is 1 time every 30 minutes. The time range of the monitoring data is from May 7, 2013 to August 25, 2013. 2. Sampling Location The soil temperature monitoring site of typical soil profile in Hulugou small catchment is located along the middle and lower part of Hongnigou. The geographic coordinates are 99°52′25.3′′E, 38°15′37.97′′N. 3.Testing Method Soil temperature observations were performed using a HOBO Pendant® Temperature/Light Data Logger 64K - UA-002-64 temperature recorder.
CHANG Qixin, SUN Ziyong
This data mainly includes ten day runoff data of Yingluo gorge and Zhengyi gorge in Heihe River Basin, among which the time range of Yingluo gorge data is 1944-2010 and Zhengyi gorge data is 1947-2010. Source: Heihe River Basin Authority. Data unit: 100 million cubic meters / 10 days. Data format: Excel "Yingluo gorge 2" and "Yingluo gorge 2 (2)" in the data table are the ten day runoff data of Yingluo gorge, the same as "Yingluo gorge" in the data table, and Yingluo gorge 2 (2) contains the chart.
WANG Zhongjing
1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2012 to December 31, 2012. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m
CHEN Rensheng, SONG Yaoxuan, LIU Junfeng, YANG Yong, LIU Zhangwen, HAN Chuntan
1、 Data Description: the data includes the flow data of spring 02 and spring 08 in hulugou small watershed from July 10, 2014 to September 10, 2014, with the data frequency of 15 days / time. 2、 Sampling location: No.02 spring is located 30 m away from the east of the outlet of the general drainage basin, with latitude and longitude coordinates of 38 ° 16 ′ 11.44 ″ N and 99 ° 52 ′ 50.9 ″ E. Spring No. 08 is located on the side of the intersection of the East and West Branch ditches near the East Branch ditches, with latitude and longitude coordinates of 38 ° 15'27.76 "n, 99 ° 52'46.41" E.
MA Rui
1. Data overview: The sampling time of this data is from May 9, 2013 to March 29, 2014.The sampling frequency is once a week. The sampling point of the river is located at the outlet weir of the small haugou watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N. The sampling location of soil water is 300m above the no. 2 meteorological station, and the lower soil profile is 99°53 '31.333 "E,38°13' 50.637" N in longitude and latitude. 2. Data content: This data set contains the anion and anion values of the river at the outlet of the basin and the soil water at 300m above the no. 2 weather station. Data acquisition means - anion values were determined by Swiss wantong model 761/813 ion chromatograph.Cation is to use the model to the United States thermoelectric IRIS Intrepid Ⅱ XSPICP - AES determination.
SUN Ziyong, CHANG Qixin
1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2012 to December 1, 2012. 2. Data content: at 08:00, 14:00 and 20:00 every day, the flow rate and water level change of the outlet hydrological section of hulugou River Basin are regularly observed (the flow rate is measured by ls45a rotating cup type flow meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd., and the water level change is monitored in real time by hobo pressure type water level meter), the water level flow relationship is established, and the outlet flow of the river basin is calculated. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.
CHEN Rensheng, SONG Yaoxuan, LIU Junfeng, HAN Chuntan
1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the daily scale data from January 1, 2013 to December 31, 2013.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m
CHEN Rensheng, HAN Chuntan
1、 Data Description: the data includes the river temperature of the river section in No.2 catchment area of hulugou small watershed and the river section at the intersection of the East and West Branch ditches from July 2014 to September 2014. 2、 Sampling location: the coordinates of river section in No.2 catchment area are 99 ° 52 ′ 58.40 ″ e, 38 ° 14 ′ 36.85 ″ n. The cross section coordinates of the river at the junction of the East and West Branch ditches are 99 ° 52'45 "E, 38 ° 15'26.60" n.
MA Rui
1、 Data description The data include the rainfall in Qilian station of the upper reaches of Heihe River from May 2012 to June 2013 and the content of silica in the soil water of hulugou small watershed. 2、 Sampling location The sampling point of rainfall is located in the Institute of eco hydrological experiment and research, Institute of cold and drought, Chinese Academy of Sciences, hulugou small watershed, with the longitude and latitude of 99 ° 53 ′ 06.66 ″ E and 38 ° 16 ′ 18.35 ″ n. Soil water sampling point is about 300m above No.2 meteorological station of Chinese Academy of Sciences. The longitude and latitude of the sampling point are 99 ° 53 ′ 31.333 ″ e, 38 ° 13 ′ 50.637 ″ n. 3、 Test method The sample test method is to use hash DR2800 ultraviolet spectrophotometer to test the rainwater obtained from the rain gauge and the soil water collected from the sampling point.
CHANG Qixin, SUN Ziyong
1. Data overview: This data set is the daily scale meteorological gradient data of Qilian station from October 1, 2011 to December 31, 2011 (installed at the end of September 2011). The observation of vg1000 gradient observation system started on October 1, 2011, recording data every 30 mins, and finally generating daily scale data. Through the long-term monitoring of wind speed and direction, air temperature and humidity, radiation and other conventional meteorological elements, combined with high-precision, high scanning frequency data collector for data storage and processing analysis. 2. Data content: The main observation elements include four layers of air temperature, humidity and two-dimensional ultrasonic wind, rain and snow meter, eight layers of ground temperature, soil moisture, etc. 3. Space time scope: Geographic coordinates: longitude: longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m
HAN Chuntan, CHEN Rensheng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn