The dataset of sun photometer observations was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas. 24 times observations were carried out by CE318 from BNU (at 1020nm, 936nm, 870nm, 670nm and 440nm, and column water vapor by 936 nm data) and from Institute of Remote Sensing Applications, CAS (at 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data) on May 20, 23, 25 and 27, Jun. 4, 6, 16, 20, 22, 23, 27 and 29, Jul. 1, 7 and 11, 2008. Those atmospheric measurements synchronized with airborne (i.e. WiDAS, OMIS) and spaceborne sensors (i.e. TM, ASTER,CHRIS and Hyperion) Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters. Field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see Geometric Positions and the Total Optical Depth of Each Channel and Rayleigh Scattering and Aerosol Optical Depth of Each Channel).
REN Huazhong, YAN Guangkuo, GUANG Jie, SU Gaoli, WANG Ying, ZHOU Chunyan
This dataset contains the flux measurements from the Huazhaizi desert steppe station eddy covariance system (EC) in the flux observation matrix from 6 June to 15 September, 2012. The site (100.31860° E, 38.76519° N) was located in a desert surface, which is near Zhangye, Gansu Province. The elevation is 1731.00 m. The EC was installed at a height of 2.85 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, XU Ziwei
1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2011 to December 31, 2011.The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m
CHEN Rensheng, SONG Yaoxuan, LIU Junfeng, YANG Yong, QING Wenwu, LIU Zhangwen, HAN Chuntan
1. Data overview: This data set is the scale meteorological gradient data of qilian station from January 1, 2012 to December 31, 2012 (installed at the end of September 2011).VG1000 gradient observation system carries out long-term monitoring of wind speed, wind direction, air temperature, humidity, radiation and other conventional meteorological elements, and carries out data storage and processing analysis in combination with the data collector with high precision and high scanning frequency. 2. Data content: The main observation factors include four layers of air temperature, humidity and two-dimensional ultrasonic wind, rain and snow volume meter, eight layers of ground temperature, soil moisture content, etc. 3. Space and time range: Geographical coordinates: longitude: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
1. Data overview: This data set is eddy covariance Flux data of qilian station from January 1, 2012 to December 31, 2012. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration co2 (mg/m^3), water vapor concentration h2o (g/m^3), pressure press (KPa), etc.The data is 30min Flux data. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
This data set includes the observation data of 40 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River since the end of June 2013. Soil moisture of 4cm, 10cm and 20cm is the basic observation of each node; 19 nodes include the observation of soil moisture and surface infrared radiation temperature; 11 nodes include the observation of soil moisture, surface infrared radiation temperature, snow depth and precipitation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification.
KANG Jian, LI Xin, MA Mingguo
The Landuse/Landcover data of the Heihe River Basin in 2000 ( newly compiled in 2012), was finished by the Remote Sensing Laboratory of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, using satellite remote sensing, based on the LandsaTM and ETM remote sensing data around 2000, combing field investigation and verification, thus leading to the establishment of the Heihe River Basin 1:10. 10,000 land use/land cover imagery and vector database. The main contents are: 1:100,000 land use graphic data and attribute data in the Heihe River Basin. The Heihe River Basin 1:100,000 (2011) land cover data and the previous land cover data use the same layered land cover classification system, the whole basin is divided into six first-class categories (cultivated land, woodland, grassland, waters, urban and rural residents, industrial and mining land and unused land), 25 secondary classes; data types are vector polygons, stored as Shape format. Land cover classification attributes: Primary type, secondary type, attribute coding, spatial distribution position Cultivated land: Plain dry land, 123, is mainly distributed in basin, Piedmont zone, river alluvial, diluvial plain or lacustrine plain (lack of water, irrigation condition is poor). Hilly dry land, 122, is mainly distributed in Hilly areas. Generally speaking, land blocks distribute on gentle slopes, ridges and mats of hills. Mountainous dry land, 121, is mainly distributed in mountainous areas, with the elevation below 4000 meters (gentle slope, mountainside, steep slope platform, etc.) and the Piedmont zones. Woodland: There is woodland (arbor), 21, is mainly distributed in the mountains (below 4000 meters ) or on the slopes of the mountains, valleys, hills, plains and so on. Shrub land, 22, is mainly distributed in higher mountain areas (below 4500 meters), most of which distribute in hillsides, valleys and sandy land. Sparse forest land, 23, is mainly distributed in the mountains, hills, plains and sandy land, and on the edge of the Gobi (loam, gravel). Other woodlands, 24, are mainly distributed in the oasis field, around rivers, roadsides and rural settlements. Grassland: Highly covered grassland, 31, is mainly distributed in mountainous areas (slow slopes), hills (steep slopes) and inter-river beaches, Gobi, sand dunes, etc. Mid-covered grassland, 32, is mainly distributed in relatively dry areas (Gobi, low-lying land and sandy land,sand dunes, etc.). The low-cover grassland, 33, grows mainly in drier areas (on the loess hills and on the edge of the sand). Waters: Channel, 41 is mainly distributed in plains, inter-river cultivated land and inter-mountain valleys. Lake, 42, is mainly distributed in low-lying areas. Reservoir pit, 43, is mainly distributed in plains and valleys between rivers, surrounded by residential areas and cultivated land. Glacier and permanent snow cover, 44, mainly distribute at the top of (over 4000) alpine regions. Flood land, 46, is mainly distributed in the high and low hillside gullies, the piedmont, the plain lowlands, and the edge of the river and lake basins. Residents land: Urban land, 51, is mainly distributed in plains, mountain basins, slopes and valleys. Rural residential land, 52, are mainly distributed in oases, cultivated land and roadsides, on the tablelands and the slopes. Industrial land and traffic land, 53, are generally distributed in the periphery of towns, areas with fairly developed transportation and industrial mining areas. Unutilized land: Sandy land, 61, is mostly distributed in the basin, on both sides of the river, in the river bay and on the periphery of the Piedmont and Gobi. Gobi, 62, is mainly distributed in the Piedmont belt with strong wind erosion and sediment transport. Saline and alkaline land, 63, is mainly distributed in dry lakes, lakeside and areas relatively low with easy water accumulation. Swamp, 64, is mainly distributed in relatively low areas with easy water accumulation. Bare soil, 65, is mainly distributed in arid areas (steep hillsides, hills and gobi), with vegetation coverage less than 5%. Bare rock, 66, is mainly distributed in extremely arid rocky mountainous areas (windy and rainless). The other, 67 mainly distributes in bare rocks formed by freezing and thawing above 4000 meters, also known as alpine tundra.
WANG Jianhua
1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2013 to December 31, 2013. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e; Latitude: 38°16 'N; Height: 2981.0 m
CHEN Rensheng, HAN Chuntan, SONG Yaoxuan, LIU Junfeng, YANG Yong, LIU Zhangwen
This data set is one of the results of the project "Determination of Cultivated Land Use Coefficient and Land Use Change Research in Zhangye City". It is a land use database in Zhangye City based on Landsat TM and ETM remote sensing data. The land use data adopts a hierarchical land cover classification system, which divides the land use types of Zhangye City into 6 first-class categories (cultivated land, forest land, grassland, water area, land for urban and rural industrial and mining residents and unused land) and 25 second-class categories. The data range includes Shandan, Minle, Linze, Gaotai, Sunan Yugu Autonomous County and Ganzhou District. The classification standard adopts the land use classification standard used by the Chinese Academy of Sciences since 1986. The data type is vector polygon and stored in Shape format. The data range covers Zhangye City.
HU Xiaoli, WANG Jianhua, LI Xin
This project is based on the gsflow model of USGS to simulate the surface groundwater coupling in Zhangye basin in the middle reaches of Heihe River. The space-time range and accuracy of the simulation are as follows: Simulation period: 1990-2012; Simulation step: day by day; The spatial scope of simulation: Zhangye basin; The spatial accuracy of simulation: the underground part is 1km × 1km grid (5 layers, the total number of grids in each layer is 150 × 172 = 25800, among which the active grid 9106); the surface part is based on the hydrological response unit (HRU) (588 in total, each HRU covers an area of several square kilometers to dozens of square kilometers). The data include: surface infiltration, actual evapotranspiration, average soil moisture content, surface groundwater exchange, shallow groundwater level, simulated daily flow of Zhengyi gorge, simulated monthly flow of Zhengyi gorge, groundwater extraction and river diversion
ZHENG Yi
This data includes animal products and labor prices; economic income structure, level and per capita net income; economic expenditure structure, productive and living expenditure structure; population composition, labor and household head age and education level; pasture area, grade, suitable stocking capacity; , livestock sheds, human and animal drinking water, pastoral roads, fence construction scale; maintenance scale, and livestock structure.
ZHAO Chengzhang
These processes include the biosphere - atmosphere transmission solutions, using FC80 closed Grell cumulus parameterization scheme, MRF planetary boundary condition and modify the CCM3 radiation, such as the heihe river basin observation and remote sensing data of important parameters in the model for second rate, and USES the heihe river basin vegetation data list data of land use in 2000 and the heihe river basin in 30 SEC DEM data, building up suitable for the study of heihe river basin ecological - hydrological processes of the regional climate model. Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 1980 to December 31, 2010, with an interval of 6 hours Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) abbreviation usurf 2) Anemometer south wind(m/s), abbreviation vsurf College 3) Anemometer temperature (degK) abbreviation tsurf College 4) maximal temperature (degK) abbreviation tmax 5) minimal temperature (deg K) abbreviated tmin 6) college Anemom specific humidity (g/kg) abbreviation qsurf 7) value (mm/hr) abbreviation precip 8) Accumulated evaporation (mm/hr) abbreviation evap 9) Accumulated sensible heat (watts/m**2/hr) abbreviation sensible 10) Accumulated net infrared radiation (watts/m * * 2 / hr) abbreviation netrad Definition file name: Abbreviation-erain-xiong. YTD
XIONG Zhe
Spectral reflectance observation was carried out for the typical underlying surface and black and white cloth in the low reaches of the Heihe River Basin during the aviation flight experiment in 2014, which will provide basic data set for the preprocessing of the flight data. 1. Observation Instrument PRS-3500 portable spectrometer, with the spectral range is 350-2500 nm, and the reference board. 2. Samples and observation methods The samples including the black and white cloth, the cantaloupe, the Tamarix chinensis, the Populus euphratica, the reeds, the weeds, the Karelinia caspica, the sandy soil, the gobi, the Sophora alopecuroides and so on. Reflectance of the reference board was measure vertically for once and then objective reflectance were measured for five times for each observation objective. 3. Observation time The typical underlying surface vegetation observation was on days of 24 July, 27 July, 31 July, 2014. The black and white cloth simultaneous observation was on 29 July, 2014. 4. Data storage The observation recorded data were stored in excel and the original spectral data were stored in *.sed files derived from the spectrometer, which can be opened by the matched software of the spectrometer or by a txt.
GENG Liying, Li Yimeng
Soil respiration observation was carried out for the typical vegetation ground in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 23 July, 2014 and finished on 2 August, 2014. 1. Observation time Days from 23 July to 2 August, 2014 (25 July, 2014 excepted) 2. Samples and observation methods Large areas with relatively homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And combined the flux tower sites distribution of the lower reaches, five field samples closed to the sites were selected The observation sites sampled including Populus and Tamarix mixed forest, Populus, Tamarix group, bare ground and melon quadrats. 3-5 plots were observed for each samples. The PVC soil rings were installed one day before observation and kept about 5 cm out of the ground (the inner diameter of the PVC is 19.5 cm, the outer diameter is 20.0 cm, and the height is 12.0 cm). Minimal the effects to the surface of vegetation and withered matter when install the rings. In order to avoid fluctuations of the soil respiration value by the PVC rings, soil respiration rate was obtained when it returned to its original state (about 24h after the rings install). The observation time for each day was from 8:00 to 12:00 when soil respiration is relatively stable and can represent the whole day in this time. The Li-8100 Open Path soil carbon flux automatic analyzer was used (Model 8100-103) once for each plot. Cycles of observation for all plots of the five samples were completed for every morning. The soil respiration values of the samples were obtain by averaging the values of plots of the samples. 3. Observation instrument Li 8100 4. Data storage The observation recorded data were stored in excel and the original Soil respiration data were stored in 81x files.
REN Zhiguo
The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature for different kinds of underlying surface, including the lager areas of homogeneous vegetation with high coverage, water, and concrete floor, while the thermal imager go into the experimental areas of the low reaches. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal imager and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time On 1 August, 2014 2. Observation samples Three field samples were chosen in the fly zone, which were large areas of homogeneous vegetation (with high coverage), water, and concrete floor. 3. Observation method Surface temperature values were observed continuously for each sample using handheld infrared thermometers during the imager went into the flying area. 4. Instrument parameters and calibration The field of view of the handheld infrared thermometer is one degree and the emissivity was assumed to be 0.95. All instruments were calibrated on 31 July, 2014 using a black body. 5. Data storage All the observation data were stored in an excel.
Li Yimeng, REN Zhiguo, Zhou Shengnan, MA Mingguo
The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the natural oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included the main vegetation type in the lower reaches of Heihe river: Populus forest, which located in the Populus forest station and the mixed forest station of Ejinaqi. Observation periods lasted from 2014-07-24 to 2014-07-31. This dataset included the raw observation data of the Populus forest observed by LI-6400 during the observation periods. 1) Objectives of observation The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. 2) Instrument and theory of the observation Measuring instrument: LI-6400XT Portable Photosynthesis System. Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. 3) Time and site of observation Observation site in the Populus forest station. Observation time: 2014-07-24 Observation site in the mixed forest station. Observation time: From 2014-07-25 to 2014-07-31. 4) Data processing The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type”.
WANG Haibo
The fractional vegetation cover observation was carried out for the typical underlying surface in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples method Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the low reaches. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. 3. Observation methods 3.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 3.2 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the Tamarix chinensisi and reeds. For the Tamarix chinensisi and reeds, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other vegetation , the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 3.3 Method for calculating the FVC The detail method of the FVC calculation can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 4 Data storage The observation recorded data were stored in excel and the original FVC data were stored in photos.
Guo Dong, WANG Haibo, Zhou Shengnan
LAI observation was carried out for the typical underlying surface in the lower reaches of Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples and observation methods Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the downstream. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. LAI data were calculated according to the transmittance derived from an A value (above-canopy readings) and four B values (below readings). More than two LAI values were obtained for each sample. At the same time, the heights of the vegetation in each sample were measured. 3. Observation instrument LAI 2200 4. Data storage The observation recorded data were stored in excel and the original LAI data were stored in txt files.
SONG Yi, Li Yimeng
This data is based on the DEM data generated by 1:250,000 digital contour lines and elevation points in China released by national basic geographic information center, and the DEM data set of heihe river basin is generated by the nearest neighbor method resampling method of ARCGIS spatial analysis module with a spatial resolution of 30 SEC.
National Basic Geographic Information Center
The dataset of automatic meteorological observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Oct. 1, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the 15-20m high spruce and the surface was covered by 10cm deep moss. All the vegetation was in good condition. Observation items were the multilayer (2m and 10m) wind speed and direction, the air temperature and moisture, rain and snow gauges, snow depth, photosynthetically active radiation, four components of radiation from two layers (, 1.68m and 19.75 m), stem sap flow, the surface temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm),soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm) and soil heat flux (5cm & 15cm). As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn