Data of four hydrogeological boreholes constructed in the badain jaran desert area of alxa right banner in 2013 are provided, including borehole construction reports, borehole location plans and borehole profiles.Adopt the core of quaternary and bedrock, install the filter tube at the bottom of the well, wash the well. Quantity of work: 4 boreholes with Numbers of K1, K2, K3 and K4.The total footage is designed according to 240 m, with an average single hole depth of 60 m. The actual depth control standard is the exposure of bedrock.
WANG Xusheng, HU Xiaonong
The land use / land cover data set of Heihe River Basin in 2011 is the Remote Sensing Research Office of Institute of cold and drought of Chinese Academy of Sciences. Based on the remote sensing data of landsatm and ETM in 2011, combined with field investigation and verification, a 1:100000 land use / land cover image and vector database of Heihe River Basin is established. The main contents include: 1:100000 land use graph data and attribute data of Heihe River Basin. The land cover data of 1:100000 (2011) in Heihe River Basin and the previous land cover are classified into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural residents, industrial and mining land and unused land) and 25 second-class categories by the same hierarchical land cover classification system. The data type is vector polygon and stored in shape format. This data respects the opinion of the data author, and cannot share the whole basin data temporarily. Please indicate the research scope and exact purpose on the data application.
WANG Jianhua
On 25 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
In the growing season of 2012, four typical shrub communities observed precipitation stem stream and penetrating rainfall during the experiment period.Data content: test date;Stem flow rate;Penetration rainfall, interception. Method of observation: water penetration was measured using a circular iron vessel with a diameter of 15 cm and a height of 10 cm.Since jinrumei, seabuckthorn and jinjijicinus shrub could not be observed on a single plant, after the canopy canopy density of the sample plots was determined, 9 water receivers were placed in each sample plot, so that there were water receivers under different canopy closures.This method of observing rain penetration allows for better collection of rain penetration from different parts of the underbrush.Due to the difficulty of observation and the lack of herbaceous vegetation, the interception of herbaceous under shrub was neglected.Takashima is centered on the stem, which is near the stem. One is placed at the edge of the crown and one at the middle of the crown and spoke. The Angle between each 3 containers is 120°.Six of each shrub were selected for stem flow observation.A single shrub was measured on the lower stems of all branches, and the stem flow of the trunk of the cluster shrub was measured by standard branch method, that is, the basal diameter of each branch of the selected shrub was measured.Under brush all branch stem, the use of polyethylene plastic hose cut open, card on the thickets stems directly, with a plastic adhesive tape and glass, the plastic tube directly connected to the trunk stem flow collection bottle, bottle thickness and plastic pipe, avoid rain and penetrate the rain into the collection bottle, before use after artificial experiments can precisely collect trunk stem flow.In order to reduce the error caused by evaporation in the measurement process, the penetrating rainfall and the flow of the trunk and stem were measured in time after the rain, such as the rain at night, and the samples were taken early in the morning on the second day. Data processing: the penetration rainfall is multiplied by 1.78 (conversion coefficient of different diameters of 20 cm and 15 cm) and replaced by the corresponding penetration rainfall (mm) at standard 20 cm.The measured water volume of each trunk flow collection bottle was divided by the projection area of the standard branch to obtain the trunk flow rate of the branch. The trunk flow rate of the standard branch was multiplied by the number of branches of the whole shrub to obtain the trunk flow rate of the whole shrub.According to the principle of water balance, the redistribution process of rainfall by shrub can be divided into three parts: interception, trunk flow and penetrating rainfall: IC = P - SF - TF Where, P is the rainfall outside the forest;TF is the penetrating rainfall;SF is the flow rate of the trunk.IC is the interception amount of the irrigation layer.According to the measured data of the stem flow through the rain trunk, the interception was obtained by using the above equation.
SONG Yaoxuan, LIU Zhangwen
On 25 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
Taking Landsat series data as the main data source, including KH in 1965 (only including Gurinai and Guaizi Lake), MSS in 1975, TM in 1990, 1995, 2006 and 2010, and ETM in 2000. Before information extraction, remote sensing images are preprocessed by image synthesis, mosaic, fusion, geometric correction and image enhancement. In the process of correction, ETM + image in 2000 is corrected by 1:100000 topographic map and used as reference image. The 4, 3 and 2 band standard pseudocolor synthesis scheme is selected for image synthesis; during correction, 7 × 8 control points are evenly selected on each image, and the average positioning error is less than 1 pixel, that is, the ground distance is less than 30m. In other years, the datum image of 2000 is used as the reference image for image registration, so that the pixels with the same name on different images have the same geographical coordinates. After correction and registration, the whole image maintains the 30 m spatial resolution of TM. Through field correction, the accuracy of qualitative analysis can be ensured to be over 95%.
XIAO Shengchun
From the beginning of June to the beginning of August, 2011, permafrost investigation was carried out in the West Branch of the headwater of Heihe River. Along the section between hot water dabanya and Shimian mine fork of erga highway, with the decrease of altitude, 7 thermowells T1, T2, T3, T4, T7, T5 and T6 were successively arranged, and thermotubes were arranged for ground temperature monitoring. The instrument used is a thermistor thermometer developed by the State Key Laboratory of Permafrost Engineering, Institute of environment and Engineering in cold and dry areas, Chinese Academy of Sciences. The resistance value is measured by fluke multimeter, and then converted into temperature value with accuracy of ± 0.05 ° C. In order to reduce the impact of the road on the drilling temperature, it is required that the vertical distance between all the drilling holes and the road shall be at least greater than 100 m when determining the hole location. Except that T1 temperature hole of hot water Daban pass is located in the south of erga highway, the other six holes are located in the north of the highway.
ZHANG Tingjun
The meteorological field is located in 2700m grassland in the Pailougou watershed of Qilian Mountain. The date of data recording is from May 2013 to September 2013, including air humidity at 1.5m, air temperature at 3.0m, atmospheric pressure at 2.8m, precipitation at 1.3m, wind speed at 2.2m and total solar radiation at 3.1m. The units are%, ℃, PA, m, m/s and W·m-2, respectively.
HE Zhibin
On 25 August 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
On 28 August 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1.6 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
1. Data overview: this data is sampled from June 21, 2012 to August 25, 2012. The sampling frequency is once a week. The sampling point is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. 2. Data content: this data set includes the ammonia nitrogen value, Doc value and anion ion value of river water at the outlet of the basin. Data acquisition means: ammonia nitrogen value is measured by hash DR2800 ultraviolet spectrophotometer; doc value is measured by analytikjena multi n / c3100 total nitrogen and total carbon tester; anion value is measured by 761 / 813 ion chromatograph of Swiss Wantong; cation is measured by iris intrepid Ⅱ xspicp-aes of us thermoelectricity.
SUN Ziyong, CHANG Qixin
Soil heat flux is an important part of surface energy balance, and it is the basis of energy balance analysis. In 2011-2013, hfp01 was installed at 5cm and 10cm of Tamarix community in the lower reaches of Heihe River to measure soil heat flux, with the frequency of 0.5h.
SI Jianhua
Soil moisture, also known as soil moisture. It's the water that stays in the pores of the soil. The main source of soil water in Picea crassifolia forest is atmospheric precipitation, which is the only source of water absorbed by Picea crassifolia to maintain its growth. This data is the soil moisture data of Picea crassifolia forest measured by the soil moisture intelligent neutron instrument.
CHANG Xuexiang
1. Data overview The sampling period of this data set was from July 19, 2012 to August 17, 2012. The location of the sampling point was near the original hongnigou outlet of the small cucurbitou watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '25.3 "E, 38 ° 15' 37.97" 2. data content A soil profile with a depth of 2m was dug at the sampling point and a soil water collector was placed at depths of 60cm, 90cm and 140cm respectively.When soil water is collected by the soil collector, different depths of soil water can be obtained by extracting tubes of different depths with a 50ml disposable syringe. This data set contains the DOC value, ammonia nitrogen value, silica content and anion value of soil water at three different depths. Data acquisition method - ammonia nitrogen value was determined by using a hash DR2800 ultraviolet spectrophotometer;The DOC value was determined by the analytikjena multi N/C 3100 total nitrogen and carbon tester.The anion value was determined by Swiss wantong model 761/813 ion chromatograph.Cation is to use the model to the United States thermoelectric IRIS Intrepid Ⅱ XSPICP - AES determination.
SUN Ziyong, CHANG Qixin
Field survey data of ecological vegetation sample in ejin delta during the project implementation period. A sample of ecological vegetation survey near 31 groundwater salinity observation points in ejin delta.The main investigation items include: plant species, plant structure, number, height, base diameter, crown width, coverage, frequency, etc.Time: 2010 and 2011 (july-august).
YU Jingjie
1. Data overview: This data set is the data set of frozen depth of permafrost observed artificially in qilian station from January 1, 2012 to December 31, 2012, and observed at 08 o 'clock every day. 2. Data content: The data content is the frozen depth data set of the tundra.The frozen depth (length) of the water in the inner rubber tube is used as a record to determine the freezing level and the upper and lower depth of the frozen layer according to the freezing position and length of the water in the frozen pot.In centimeters (cm), round off the whole number and round off the decimal.Observe once a day at 0:8. 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m
CHEN Rensheng, SONG Yaoxuan, HAN Chuntan, LIU Junfeng, YANG Yong
The meteorological field is located at 3200m above sea level in Pailugou watershed of Qilian Mountain, which belongs to the high mountain forest line zone, the ecotone of Picea crassifolia forest and alpine shrub. This data set includes precipitation, air temperature, radiation, wind speed, etc., with units are mm, ℃, W/m^2 and m/s respectively. The date of data recording is from June 2012 to October 2013, in which the temperature data is partially missing due to the instrument.
HE Zhibin
Automatic monitoring data of groundwater level depth and salinity of three shallow groundwater observation Wells in ejin delta. Data contents include: observation well number, geographical coordinates, description of surface features, buried depth of groundwater level (unit: cm), salinity (unit: mS/cm). In terms of space, the dynamic monitoring of water and salt is set up in desert gobi area, natural oasis area and artificial oasis area in ejin delta, representing three typical underlying surface conditions.Since May 12, 2011, the frequency of observation has been 30 minutes.
YU Jingjie
1、 Data overview The sampling period of this data set is from June 17, 2012 to August 13, 2012. The sampling location is in the Institute of ecological hydrology experiment and research, Institute of cold and drought, Chinese Academy of Sciences, hulugou small watershed. The longitude and latitude of the sampling point are 99 ° 53 ′ 06.66 ″ e, 38 ° 16 ′ 18.35 ″ n. 2、 Data content This data is obtained by using the hash DR2800 ultraviolet spectrophotometer to test the rainwater obtained from the rain gauge. This data contains silica values for three rainfall periods.
CHANG Qixin, SUN Ziyong
The content is the daily runoff observation record of the outlet weir of the Pailugou basin. The spatial range of Pailugou: 38.529-38.558N, 100.286-100.536E. Data dates include May 1, 2013 to September 5, 2013. The unit is m3/day.
HE Zhibin
At the same time with the observation of soil moisture content, the project measures the soil temperature data of Tamarix Tamarix forest in the lower reaches of Heihe River from 2011 to 2012, with a depth of 10, 30, 50, 80, 140cm and a frequency of 0.5h. The measuring instrument is 109ss produced by Campell company of the United States.
SI Jianhua
This data is obtained by spatial interpolation and permafrost simulation through the surface temperature at 0 cm of nine stations in and outside the source area of the upper reaches of Heihe River. In the figure, 1 represents seasonal frozen soil and 2 represents permafrost. The data is in TIFF format, WGS-84 is used for projection, and the spatial range is 37.7263n-39.0976n, 98.5769e-101.1608e.
GE Shemin
The Global LAnd Surface Satellite albedo product was produced by using MODIS data product of 1km Surface reflectance (MOD/MYD09GA), Angular Bin inversion algorithm and statistics-based Temporal Filter algorithm based on statistical knowledge.In this data set, two tiles (h25v04 and h25v05) covering the black river basin were selected from GLASS global products. After Mosaic, projection conversion and cutting, the black sky albedo and white sky albedo data sets with 1km resolution of the black river basin were obtained, including SIN and UTM projection methods.The data set of SIN projection is in HDF format, with a large coverage range (about 1200*2400 square kilometers) and a temporal resolution of 1 day.The UTM projection data set is in raw format, cut according to the vector boundary of black river, and the temporal resolution is 8 days.
Liu Qiang
The data set is the physiological and ecological parameters of the dominant species of each ecosystem in Heihe River Basin. According to the requirements of tesim model, the data set divides Heihe River basin into seven ecosystems: deciduous broad-leaved forest ecosystem (BRD), evergreen coniferous forest ecosystem (CNF), agricultural field ecosystem (CRP), desert ecosystem (DST), meadow grassland ecosystem (MDS) Shrubbery ecosystem (SHB) and grassland ecosystem (STP). Some of the data in this data set are based on the measured data, some are obtained by reference documents, but after verification, they are applied to the Heihe River Basin. For the data in this data, each parameter of each ecosystem has three values, which are the value in the model, the minimum value and the maximum value of this parameter. The data can provide input parameters for the ecological process model, and the data set is still in further optimization.
PENG Hongchun
It is of great significance to carry out the quantitative study on the evapotranspiration of forest vegetation in Qilian Mountain, to correctly understand the hydrological function of the forest ecosystem in Qilian Mountain, to understand the water cycle process and to develop the hydrological model of the watershed, and to make a reasonable forest management plan. Forest evapotranspiration is mainly composed of soil surface evaporation, vegetation transpiration and canopy interception water evaporation. Traditional evapotranspiration research methods can be divided into two categories: actual measurement and estimation. The actual measurement methods include hydrology method, micro meteorology method and plant physiology method; the estimation method is to calculate Evapotranspiration by model, mainly including analysis model and empirical model. However, none of these methods can effectively distinguish forest transpiration from evaporation. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The transpiration water consumption of Picea crassifolia forest was measured by thermal pulse technique, and the scale was extended to the stand scale to indicate the transpiration water consumption of Picea crassifolia forest.
CHANG Xuexiang
This data set is collected according to the output results of tesim ecological process model, including biomass, plant N and P content, evapotranspiration, NPP and other model output results. Some of the results are obtained by field measurement, some by laboratory analysis of field samples, some by literature.
PENG Hongchun
This data is the ring width chronology of Three Shrub overlord sample points in Badain Jilin desert in the upper reaches of Heihe River Basin, which represents the climate change of dry and wet in the desert area in the past 160 years.
XIAO Shengchun
This data is based on the observation of corn in the middle reaches of heihe river irrigated area. The observation instrument is licor-6400 XTR and the site is selected near the HiWATER combined test superstation.The photosynthesis parameters of maize were observed through uncontrolled experiments and controlled experiments (controlling carbon dioxide and light intensity) from June 22, 2012 to August 24, 2012.
LI Yanhui, PENG Hongchun, YANG Bao
The annual ring is the main technical means for carrying out the variance analysis, and it is also one of the methods to establish the expansion of water consumption time of plant transpiration. In 2001, this project sampled 60 Populus euphratica in Ejin Oasis and measured the age and ring width index.
SI Jianhua
1、 Data overview: use solinst leveloger automatic water level gauge to observe river water level, calculate flow data through water level flow curve, and manually observe the flow through self-made flow weir (see thumbnail). Due to the limited amount of manual observation data, further supplementary observation is needed to improve the water level discharge curve. 2、 Data content: we manually observe the water level and flow data of the two sections. The first section: the exit of area III divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, the boundary point between cold desert zone and cold meadow zone, where the valley is deep and the bedrock is exposed. Coordinates of observation points (99 ° 53 ′ 37 ″ e, 38 ° 13 ′ 34 ″ n). The observation period is from July 21, 2012 to May 6, 2013. The observation frequency of automatic observation data is 1 time / 30 minutes from July 21 to July 25, 2012. 1 time / 15 minutes from July 25, 2012 to May 6, 2013. After September 15, 2012, there was an error in the automatic monitoring data of the observation point. The reason may be that the flow of the river channel became smaller, the probe was exposed to the air, and the water level gauge could not correctly reflect the change of the flow of the river channel. At the same time, the temperature decreased after September, and the river channel froze in winter. There was no automatic monitoring flow data during this period. The second section: the exit of No.2 area divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, with flat terrain, is located at the catchment of the outlet of the alluvial delta Valley, and the south side is the shrub area. A small flow weir is built. The observation point coordinates (99 ° 52 ′ 58 ″ e, 38 ° 14 ′ 36 ″ n), and the observation frequency of automatic observation data is 1 time / 15 minutes. The observation period is from July 21, 2012 to May 6, 2013. After the observation point entered September, the river flow gradually decreased and there was no water in the river. At this time, the reading of water level gauge can not correctly reflect the change of river discharge. At the same time, our field experience shows that from September to May of the next year, the observation point is basically in a state of no water.
SUN Ziyong, YU Linan
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
Soil survey data corresponding to the ejin delta and the ecological vegetation sample during the project implementation period. Soil profile sampling corresponding to the ecological vegetation survey in ejin delta (5), 20 cm stratified sampling.Investigation items included: soil salinity, soil organic matter, C, N, P, etc., time: August 2011.
YU Jingjie
On 25 August 2012, Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was utilized to obtain point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
Soil water content is the key factor affecting the transpiration water consumption of plants in desert riparian forest. In this project, the typical plant communities in the lower reaches of Heihe River are selected, with coordinates of 42 ° 02 ′ 00.07 ″ N and 101 ° 02 ′ 59.41 ″ E. through continuous measurement of soil water data in 2010-2012, the observation instrument is environscan (Australia, ICT), with observation depth of 10, 30, 50, 80 and 140cm, and observation frequency of 0.5h Understanding the mechanism of environmental regulation of transpiration water consumption of desert riparian forest in the lower reaches of Heihe River provides basic data support.
SI Jianhua
1. Data overview: This data set is the groundwater level data of qilian station from January 1, 2012 to December 31, 2012.Well no. 1 is located at the side of the general controlled hydrologic section of the cucurbitou basin, with a depth of 12.8m and an aperture of 12cm.The second well is located to the east of the delta about 100m away from the river. The depth of the well is 14.7m and the aperture is 12cm. 2. Data content: U20-hobo water level sensor is installed in the underground well, which is mainly used to monitor the groundwater level changes in the small gourgou watershed. The data are daily scale data. 3. Space and time range: Geographical coordinates of well no. 1: longitude: longitude: 99° 53’e;Latitude: 38°16 'N;Elevation: 2974m (near the hydrological section at the outlet of the basin). Geographical coordinates of well no. 2: longitude: 99° 52’e;Latitude: 38°15 'N;Altitude: 3204.1m (east of the eastern branch of the delta).
HAN Chuntan
Leaf water potential is an important indicator of plant growth. In this project, Populus euphratica and Tamarix were selected in the lower reaches of Heihe River. Wp4c was used for 15 days to measure leaf water potential data before dawn, noon and sunset, which can provide basic data for understanding the growth conditions of desert plants.
SI Jianhua
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
The accurate estimation of sapwood area and heartwood area is the main means to convert the transpiration water consumption scale. In October 2011, this project investigated the sapwood and heartwood of 98 Populus euphratica in Ejin Oasis and measured the width of sapwood and heartwood. The relation curve of sapwood area with DBH and height was established. Please refer to LI Wei, SI Jianhua,FENG Qi, YU Teng fei. Response of Transpiration to Water Vapour Pressure Defferential of Populus euphratica. Journal of Desert Research, 2013, 33(5): 1377-1384. for details.
SI Jianhua
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the scale data from January 1, 2012 to December 31, 2012.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m.
CHEN Rensheng, HAN Chuntan
The sampling and distribution of plant materials in the arid regions of the middle and lower reaches of Heihe River Basin. The plants are mainly shrubs and a few herbs. The numbering of plant materials is consistent with the morphological structural characteristics analysis table and is used in correspondence with each other.
LIU Yubing
This data set contains the observation data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. The observation items include: atmospheric wind temperature and humidity gradient observation (2cm, 4cm, 10cm, 20m and 30m), wind direction, air pressure, photosynthesis effective radiation, precipitation, radiation four components, surface temperature, multi-layer soil temperature (5cm, 10cm, 15cm, 20cm and 40cm), soil moisture (10cm, 20cm, 50cm, 100cm and 180cm) and soil heat flux (5cm, 10cm and 15cm). Please refer to the instruction document published with the data for specific header and other information.
Zhangye city meteorological bureau
The survey area is 101 ° 3 ′ 13.265 ″ longitude, 42 ° 1 ′ 53.660 ″ latitude and 883.54m altitude. The sample area is 100 × 100m, and the sample area is 20 × 20m. The crown width, height and DBH of Populus euphratica were investigated.
SI Jianhua
Trunk sap flow is an effective tool for measuring transpiration of a single plant. In this project, the trunk sap flow data of Populus euphratica in the lower reaches of Heihe River was measured by HRM (ICT, Australia) with a frequency of 0.5h. In the growth season of 2012-2013, the installation location is the north and lateral roots (50cm underground depth, 30cm away from the trunk) at the DBH (1.3m).
SI Jianhua
On 25 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain LiDAR DSM point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Aerial LiDAR-DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
XIAO Qing, Wen Jianguang
This data set is the multispectral data used to retrieve 30 meter Lai and fAPAR products in 2012. It is obtained by the environmental satellite CCD sensor with a resolution of 30 m and four bands. This data set has been geometric corrected, radiometric corrected and converted into reflectivity image.
FAN Wenjie
Lysimeter is the most effective tool for measuring water consumption per plant, which can provide daily, monthly and seasonal changes of transpiration water consumption per plant. In this project, a lysimeter measurement system for Populus euphratica seedlings is established in the lower reaches of Heihe River, with the observation frequency of 0.5h, mainly including water content changes, infiltration, evapotranspiration, etc.
SI Jianhua
This dataset include soil moisture and soil temperature observations of 50 SoilNET Nodes during June 2012~March 2013 (UTC+8), which located in a MODIS pixel in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area, and aim to capture the spatial-temporal variance at the ~100 m scale. Each SoilNET node observe the soil moisture and soil temperature at 4 cm, 10 cm, 20 cm and 40 cm depth using the SPADE sensor with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "SoilNET_data_document.docx".
WANG Xufeng, KANG Jian, Li Dazhi, Wang Zuocheng, Dong Cunhui, LI Xin, MA Mingguo
Based on MODIS Lai products (mcd15a2 and mod15a2), the daily and 1km resolution Lai datasets of 2001-2011 are obtained by using the improved hats algorithm to remove the cloud and reconstruct. The product coordinate system is longitude and latitude projection, and the spatial range is 96.5e-102.5e, 37.5n-43n. Every day's data is stored as a geotif file. The name is Heihe YYY ɇ Lai ɇ recon.ddd.tif, where yyyy is the year and DDD represents a certain day in a specific year. There are 365 days of output data by default every year. The data type is single precision floating-point type, the pixel filling value of invalid value is 255, the valid data range is 0-100, and the scaling factor is 0.1.
JIA Li
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn