The No. 1 hydrological section is located at 213 Heihe River Bridge (100.345° E, 38.912° N, 1546 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.1 hydrological section from 13 June, 2012, to 6 September, 2013. This section consists of two river sections, i.e., the east section,which is denoted as No. 1 and the west section, which is denoted as No. 2. The width of this section is 330 meters and consists of a gravel bed; the cross-sectional area is unstable because of human factors. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
The data set contains the vortex correlator observation data of sidaqiao superstation in the downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the fourth bridge of ejin banner in Inner Mongolia, tamarisk is the underlying surface.The latitude and longitude of the observation point is 101.1374e, 42.0012n, and the altitude is 873 m.The height of the vortex correlation instrument is 8m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A, Li7500 after April 25) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.From April 22 to 25, data was missing due to the calibration of Li7500 of vortex system.Suspicious data caused by instrument drift shall be identified in red. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlativity observation data of the euphrate poplar forest station downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in Inner Mongolia ejin banner four bridge, under the surface is the euphorbia poplar forest.The longitude and latitude of the observation point are 101.1236e, 41.9928n and 876m above sea level.The rack height of the vortex correlativity instrument is 22m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.2m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.On April 22, solstice and April 25, data was missing due to the calibration of the vortex system Li7500.August 17 solstice September 5, due to memory card problems, resulting in intermittent data. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the vortex correlativity data of zhangye wetland station in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to September 25, 2015.The site is located in zhangye city, gansu province.The latitude and longitude of the observation point is 100.44640E, 38.97514N, and the altitude is 1460.00m.The height of the vortex correlation instrument is 5.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (Gill) and the CO2/H2O analyzer (Li7500A) is 25cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, Angle correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.The suspicious data caused by instrument drift and other reasons are marked in red. The vortex system Li7500A was calibrated on April 12, 2015, solstice, May 1, 2015, and the data is missing.After September 26, there were many errors in the data due to problems in the power supply and Li7500A. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2015 to December 31, 2015 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water probe is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the sensor problem, the data of wind speed was partly missing between September 28 and November 8, 2015;Infrared temperature 1 data missing between 4.28 and 5.23 due to sensor problem;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data of huazhaizi desert station in the middle reaches of heihe hydrological meteorological observation network from January 18, 2015 to December 31, 2015.The station is located in huazhaizi, zhangye city, gansu province.Huazhaizi station is equipped with observation instruments from Beijing normal university (longitude and latitude is 100.3201E, 38.7659N) and Cold and Arid Regions Environmental and Engineering Research Institute (longitude and latitude is 100.3186E, 38.7652N), with an altitude of 1,731m.The observation instrument of Beijing normal university has been installed since June 11, 2015. Specifically, the air temperature and relative humidity sensors are installed at 5m and 10m, facing due north.Install the barometer inside the waterproof box;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 5m and 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried 6cm underground.The observation instruments set up by Cold and Arid Regions Environmental and Engineering Research Institute are as follows: the wind speed sensor is set up at a height of 0.48m, 0.98m and 2.99m, with a total of three layers, facing north;The wind direction sensor is mounted at a height of 4m;Air temperature and relative humidity sensors are located at 1m and 2.99m respectively, with a total of 2 layers, facing north by east.The installation height of the four-component radiometer is 2.5m, facing due south;The air pressure sensor is placed in the waterproof box;The installation height of the tilting bucket rain gauge is 0.7m;The soil temperature probe is buried at depths of 4cm, 10cm, 18cm, 26cm, 34cm, 42cm and 50cm underground.The soil moisture sensors were buried underground 2cm, 10cm, 18cm, 26cm, 34cm, 42cm, 50cm and 58cm, respectively, with 3 repetitions buried in 2cm.Specific observation items are as follows: (1) observation items of Beijing normal university : air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit:Volume moisture content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius). (2) observation items of Cold and Arid Regions Environmental and Engineering Research Institute : wind speed (WS_0. 48 m, WS_0. 98 m, WS_2. 99 m) (unit: m/s), wind (WD_4m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor) (unit: watts per square meter), air temperature and humidity (Ta_1m, Ta_2. 99 m, RH_1m, RH_2 99 m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit:Mm), soil temperature (Ts_4cm, Ts_10cm, Ts_18cm, Ts_26cm, Ts_34cm, Ts_42cm, Ts_50cm) (unit: Celsius), soil moisture (Ms_2cm_1, Ms_2cm_2, Ms_2cm_3, Ms_10cm, Ms_18cm, Ms_26cm, Ms_34cm, Ms_42cm, Ms_50cm, Ms_58cm) (unit: volumetric water content, percentage). The observed elements of Beijing normal university were the mean value of 10min, and those of Cold and Arid Regions Environmental and Engineering Research Institute were the mean value of 30min. Processing and quality control of observation data :(1) ensure 144 observation data elements of Beijing normal university every day (every 10min); Ensure the observed elements of Cold and Arid Regions Environmental and Engineering Research Institute are 48 data per day (every 30min). If the data is missing, it will be marked by -6999.Due to the problem of the wind speed sensor, the 10m wind speed observed by Beijing normal university was missing between June 21-7.09, 2015 and December 16-12.25.Due to the problem of data storage, the precipitation observed by Cold and Arid Regions Environmental and Engineering Research Institute is missing between 1.18 and 1.22.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the meteorological element observation system data from January 1, 2015 to December 31, 2015 of the naked earth station downstream of heihe hydrometeorological observation network.The station is located in Inner Mongolia ejin banner dalaihubu town four road bridge, the underlying surface is bare ground.The longitude and latitude of the observation point are 101.1326e, 41.9993n and 878m above sea level.The four-component radiometer is installed at 6m, facing due south;Two infrared surface thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 2cm and 4cm underground, 2m to the south of the meteorological tower.The soil moisture sensor is buried 2cm and 4cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Radiation observation projects are: four components (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil moisture (Ms_2cm, Ms_4cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm Ts_2cm Ts_4cm) (unit: degrees c). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The four-component long-wave radiation occurred between April and July 26, 2015 due to sensor problems, data was missing;The soil heat flux was adjusted on June 5 and then decreased.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the data of meteorological gradient observation system of sidaqiao superstation downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the four Bridges of dalaihubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1374e, 42.0012n, and 873m above sea level.Air temperature, relative humidity and wind speed sensors are installed at 5m, 7m, 10m, 15m, 20m and 28m, with a total of 6 layers, facing due north.The wind sensor is installed at 15m, facing due north;The barometer is installed in the waterproof box;Dump-type rain gauge installed at 28m;The four-component radiometer is installed at 10m, facing due south;The two infrared thermometers are installed at 10m, facing due south, and the probe is facing vertically down.The two photosynthetic effective radiometers are installed at a location of 10m, facing due south, with the probes pointing vertically up and down, respectively.Part of the soil sensor is installed at 2m to the south of the tower body, in which the soil heat flow plate (self-calibration formal) (3 pieces) is successively buried at 6cm underground;The average soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground.The soil moisture sensors were embedded in the ground at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The observation items are: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), up and down the photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;Infrared temperature 1 between February 11, 2015 and April 25, 2015 due to sensor problems, data is missing;The soil temperature of 4cm was between October 8, 2015 and October 29, 2015. Due to sensor problems, the data was missing.(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains data of meteorological elements observation system of farmland station downstream of heihe hydrometeorological observation network from January 1, 2015 to October 29, 2015.The station is located at sidao bridge, dalai hubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1338e, 42.0048n, and 875m above sea level.The four-component radiometer is installed at 6m, facing due south;The two infrared thermometer sensors are installed at the position of 6m, facing south, and the probe is facing vertically downward.The two photosynthetic radiometers are installed at the position of 6m, facing due south, and the probes are vertically up and down in one direction.The soil temperature probe is buried at 0cm on the surface, 2cm and 4cm underground, and 2m to the south of the meteorological tower.The soil moisture sensors are respectively buried 2cm and 4cm underground, in the south due to 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm away from the weather tower 2m due south. Radiation observation projects are: four components (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm) (unit: c), soil moisture (Ms_2cm, Ms_4cm) (unit:Volume water content, percentage), up and down photosynthetic effective radiation (PAR_up, PAR_down) (unit: micromole/m s). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;Due to data storage problems, data was missing from September 25 to October 01, 2015;Soil heat flux of 3 and 0cm soil temperature was missing between 6.14-6.22 due to sensor problems.Due to sensor problems, the soil temperature of 0cm occasionally appeared problems between 6.09 and 9.22.Soil heat flux 2 was missing between 10.17 and 10.29 due to sensor problems.(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the vortex correlator observation data of the farmland station downstream of heihe hydrometeorological observation network from January 1, 2015 to November 5, 2015.The station is located in the four Bridges of ejin banner in Inner Mongolia.The latitude and longitude of the observation point are 101.1338e, 42.0048n, and 875m above sea level.The height of the vortex correlation instrument is 3.5m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift shall be identified in red.On April 21, solstice, June 22, the instrument was being replaced, during which the data was missing, and the station was dismantled on November 5. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains meteorological observation data of E’bao station upstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in qinghai qilian county E’bao town grassland, the underlying surface is alpine grassland.The latitude and longitude of the observation point are 100.9151E, 37.9492N, and 3294m above sea level.The air temperature and relative humidity sensors are set up at 5m, facing due north.The barometer is installed in an anti-skid box on the ground;The inverted bucket rain gauge is installed at 10m;Wind speed and direction sensors are set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, in the south due to 2m from the meteorological tower.The soil moisture probe is buried 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, directly to the south of 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm, in the south due to 2m from the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;The four-component radiation and infrared temperature were between October 11, 2015 and November 05, 2015.11.1-11.5 re-adjustment of observation tower instruments, data missing;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The No. 2 hydrological section is located at 312 Heihe River Bridge (100.411° E, 38.998° N, 1485 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.2 hydrological section from 19 June, 2012, to 31 December, 2013. This section consists of two river sections, i.e., the east section, which is denoted as No. 1 and the west section, which is denoted as No. 2. The width of this section is 90 meters and consists of a gravel bed; the cross-sectional area is unstable because of human factors. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
The data set contains eddy covariance System observation data of Barren-land Station which is located in the lower reaches of the Heihe Hydro-meteorological Observation Network from January 1, 2015 to December 31, 2015. The site is located in Sidaoqiao, Ejina Banner, Inner Mongolia, and the underlying surface is barren land. The latitude and longitude of the observation point is 101.1326E, 41.9993N, and the altitude is 878m. The mount height of the Eddy Covariance System is 3.5 m, the sampling frequency is 10 Hz, the ultrasonic orientation is north, and the distance between the ultrasonic wind speed temperature meter (CSAT3) and the CO2/H2O analyzer (Li7500) is 15 cm. The original observation data of the Eddy Covariance System is 10 Hz, and the released data is a 30-minute data processed by Eddypro software. The main steps of the processing include: outlier eliminating, delay time correction, coordinates rotation (secondary coordinates rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. Meanwhile, the quality evaluation of each flux value was performed,mainly includes atmospheric stability (Δst) test and turbulence similarity (ITC) test. The 30-min flux value output of Eddypro software was also screened: (1) Data from the instrument error was eliminated; (2) Data obtained with one hour before and after precipitation was removed; (3) Data with a deletion rate greater than 10% of the 10 Hz raw data every 30 minutes was eliminated; (4) Observation data of weak turbulence at night (u* less than 0.1 m/s) was excluded. The average period of observation data is 30 minutes, 48 data per day, and the missing data is marked as -6999. The data was missing due to Li7500 calibration of the eddy system on April 7 and 8; the suspicious data caused by instrument drift and other reasons was marked by red fonts. Published observation data include: date/time Date/Time, wind direction(°), horizontal wind speed(m/s), lateral wind speed standard deviation(m/s), ultrasonic virtual temperature (°C), water vapor density (g/m3), carbon dioxide concentration(mg/m3), friction velocity (m/s), length (m), sensible heat flux(W/m2), latent heat flux (W/m2), carbon dioxide flux (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average data of 0:00-0:30; the data is stored in *.xls format. For hydro-meteorological network or station information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.Two groups of LAS (BLS900_1 and BLS900_2) were along the northeast to southwest direction, with an effective height of 25.5m and a light diameter length of 2390m and 2380m, respectively. The observation time was from January 1 to April 24, 2015 and from February 11 to December 31, 2015, respectively.On April 25, 2015, LAS (bls900-1 dismantled, bls900-2 placed in the original BLS900_1 transmitting tower and BLS900_2 receiving tower) were adjusted into a group, with an effective height of 25.5m and a light diameter length of 2350m.The site is located in ejin banner, Inner Mongolia, with tamarix chinensis, populus populus, bare land and cultivated land under it.The latitude and longitude of the north tower of point 1 is 101.147e, 42.005n, and that of the south tower is 101.131e, 41.987n.The latitude and longitude of the north tower at point 2 is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.121e, 41.990 N, with an altitude of about 873m.The sampling frequency of large aperture scintillator is 1min. Large aperture flicker meter raw observation data for 1 min, published data after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS900_1: Cn2 > 7.25 e-14, BLS900_2: Cn2 > 7.33 E - 14, adjusted BLS900: Cn2 > 7.58 e-14);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).During the iterative calculation, the stability universal function of Thiermann and Grassl(1992) was selected.Please refer to Liu et al(2011, 2013) for detailed introduction. Some notes on the released data :(1) during the simultaneous observation of two LAS, LAS data at downstream point 1 is mainly BLS900_1, and the missing time is marked by -6999;LAS data of downstream point 2 is mainly BLS900_2, and the missing moment is marked by -6999.After April 25, the downstream LAS data was observed as BLS900_2, and the missing time was marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data from January 1, 2015 to September 9, 2015 from the aruyangpo station, upstream of heihe hydrometeorological observation network.The station is located in yangpo, north of ahrou township, qilian county, qinghai province.The latitude and longitude of the observation point is 100.5204E, 38.0898N and 3529m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;Two photosynthetically active radiators were installed at 6m, facing due south, and one probe was vertically upward and downward.The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the damage of wind direction sensor, data was missing between July 2015 and September 2015;The station was demolished after September 9;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains meteorological element observation data of heihe remote sensing station in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the east of dangzhai town, zhangye city, gansu province.The longitude and latitude of the observation point are 100.4756e, 38.8270n and 1560m above sea level.The air temperature and humidity sensor is located at 1.5, facing due north.The barometer is in the waterproof box;The tilting bucket rain gauge is installed at 0.7 m;The wind speed and direction sensor is located at 10m, facing due north;The installation height of the four-component radiometer is 1.5m, facing due south;The installation height of the two infrared thermometers is 1.5m, facing due south and the probe facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground.The soil water probe was buried at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm.Average soil temperature probes were buried in 2cm and 4cm;The soil heat flow plate (3 pieces) is buried 6cm underground.Two photosynthetically active radiometers were set up 1.5m above the canopy (one probe vertically upwards and one probe vertically downwards), facing due south.Steam dishes were also observed (E601B, diameter 61.8cm). Observation projects are: air temperature and humidity (Ta_1. 5 m, RH_1. 5 m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (in:Degrees Celsius), soil moisture (Ms_0cm Ms_2cm Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: c), up and down photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), the evaporating dish in the depth of the water, the depth (unit: mm). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Data missing due to power supply problems;Due to collector problem, many observation elements have more error values;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains meteorological element observation data of baji tan gobi station in the middle reaches of heihe hydrological meteorological observation network from January 1, 2015 to April 13, 2015. The station is located at baji beach, chengxiye city, zhangye city, gansu province, and the underlying surface is gobi.The longitude and latitude of the observation point are 100.3042e, 38.9150n and 1562m above sea level.Air temperature and relative humidity sensors are set at 5m and 10m, facing due north;The barometer is installed at 2m;The tilting bucket rain gauge is installed at 10m;The wind speed sensor is set at 5m and 10m, and the wind direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried 6cm underground. Observation projects are: air temperature and humidity (Ta_5m RH_5m Ta_10m, RH_10m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage), and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: Celsius). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name.The station will be demolished after April 13. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The data set contains the data of thermal diffusion fluid flow meter in the hydrometeorological observation network from January 1 to December 31, 2015. The study area is located in huyang forest, ejin banner, alxa league, lower reaches of heihe, Inner Mongolia autonomous region.According to the different height and diameter at breast height of iminqak, choose install Thermal diffusion flow meter sample tree (Thermal Dissipation SAP flow velocity Probe, TDP), domestic TDP pin type Thermal diffusion plant flow meter, model for TDP30.The TDP1 point and TDP2 point of sample plots were set in the vicinity of mixed forest station and populus populus station, respectively.Sample tree height from high to low in turn for TDP2 (16.4 meters, 18.3 meters, 16.9 meters), TDP1 (12.5 meters, 13 meters, 14 meters), diameter at breast height order from large to small is TDP1 (48 cm, 41.6 cm, 46.6 cm), TDP2 (33.8 cm, 38.5 cm, 42.3 cm), density of TDP1 respectively (0.0158 per square meter) tree, TDP2 (0.0116 per square meter), to represent the whole area of populus euphratica transpiration measurement.Two sets of probes are installed in each sample tree, with a height of 1.3 meters and a direction of east and west of the sample tree. The original observation data of TDP is the temperature difference between the probes, and the collection frequency is 10s, with an average output of 10 minutes.The published data are calculated and processed trunk flow data, including flow rate V (cm/h), flux Fs (cm3/h) and daily transpiration Q (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Qiao et al. (2015) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set contains the eddy correlation-meter observation data of the mixed forest station downstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in Inner Mongolia ejin banner four road bridge, under the surface is populus and tamarix.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874 m above sea level.The frame of the vortex correlative is 22m high, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500 before April 22 and EC150 after April 26) is 17cm/0cm (after April 26). The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.2m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.January 22 - February 11 data error due to collector problem;April 22 solstice April 26 due to instrument replacement, data missing;June 5th solstice June 9th data was missing due to memory card problem.Suspicious data caused by instrument drift, etc., are identified in red font.When 10Hz data is missing due to a problem with the memory card storage data (9.07-11.08), the data is replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This data set includes observation data of meteorological elements in the Shenshawo Desert Station in the middle of the Heihe Hydrometeorological Observation Network from January 1, 2015 to April 12, 2015. The site is located in Shenshawo, Zhangye City, Gansu Province, and the underlying surface is desert. The latitude and longitude of the observation point is 100.4933E, 38.7892N, and the altitude is 1594m. The air temperature and relative humidity sensors are installed at 5m and 10m, facing the north; the barometer is installed at 2m; the tipping bucket rain gauge is installed at 10m; the wind speed sensor is set at 5m, 10m, and the wind direction sensor is set at 10m, facing the north; the four-component radiometer is installed at 6m, facing south; two infrared thermometers are installed at 6m, facing south, the probe orientation is vertically downward; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower, and among them a repetitive soil moisture sensor (Ms_40cm_2) was embedded in the underground 40cm on May 6, 2014.soil heat flux plates (3 pieces) are buried in the ground 6 cm in order. Observation items include: air temperature and humidity (Ta_5m, RH_5m, Ta_10m, RH_10m) (unit: centigrade, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m / s), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts / square meter), surface radiation temperature (IRT_1, IRT_2 ) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From March 19, 2015 to March 26, due to the collector problem, the data is missing; (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2015-6-10 10:30; (6) the naming rules are: AWS+ site name. The station was dismantled after April 12. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn