1. Data Description The soil temperature monitoring of the typical soil profile of Hongnigou catchment distributes in seven different depth, which are 20cm, 40cm, 60cm, 80cm, 120cm, 160cm and 200cm. The observation frequency is 1 time every 30 minutes. The time range of the monitoring data is from May 7, 2013 to August 25, 2013. 2. Sampling Location The soil temperature monitoring site of typical soil profile in Hulugou small catchment is located along the middle and lower part of Hongnigou. The geographic coordinates are 99°52′25.3′′E, 38°15′37.97′′N. 3.Testing Method Soil temperature observations were performed using a HOBO Pendant® Temperature/Light Data Logger 64K - UA-002-64 temperature recorder.
CHANG Qixin, SUN Ziyong
This data mainly includes ten day runoff data of Yingluo gorge and Zhengyi gorge in Heihe River Basin, among which the time range of Yingluo gorge data is 1944-2010 and Zhengyi gorge data is 1947-2010. Source: Heihe River Basin Authority. Data unit: 100 million cubic meters / 10 days. Data format: Excel "Yingluo gorge 2" and "Yingluo gorge 2 (2)" in the data table are the ten day runoff data of Yingluo gorge, the same as "Yingluo gorge" in the data table, and Yingluo gorge 2 (2) contains the chart.
WANG Zhongjing
1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2012 to December 31, 2012. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m
CHEN Rensheng, SONG Yaoxuan, LIU Junfeng, YANG Yong, LIU Zhangwen, HAN Chuntan
1、 Data Description: the data includes the flow data of spring 02 and spring 08 in hulugou small watershed from July 10, 2014 to September 10, 2014, with the data frequency of 15 days / time. 2、 Sampling location: No.02 spring is located 30 m away from the east of the outlet of the general drainage basin, with latitude and longitude coordinates of 38 ° 16 ′ 11.44 ″ N and 99 ° 52 ′ 50.9 ″ E. Spring No. 08 is located on the side of the intersection of the East and West Branch ditches near the East Branch ditches, with latitude and longitude coordinates of 38 ° 15'27.76 "n, 99 ° 52'46.41" E.
MA Rui
1. Data overview: The sampling time of this data is from May 9, 2013 to March 29, 2014.The sampling frequency is once a week. The sampling point of the river is located at the outlet weir of the small haugou watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N. The sampling location of soil water is 300m above the no. 2 meteorological station, and the lower soil profile is 99°53 '31.333 "E,38°13' 50.637" N in longitude and latitude. 2. Data content: This data set contains the anion and anion values of the river at the outlet of the basin and the soil water at 300m above the no. 2 weather station. Data acquisition means - anion values were determined by Swiss wantong model 761/813 ion chromatograph.Cation is to use the model to the United States thermoelectric IRIS Intrepid Ⅱ XSPICP - AES determination.
SUN Ziyong, CHANG Qixin
1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2012 to December 1, 2012. 2. Data content: at 08:00, 14:00 and 20:00 every day, the flow rate and water level change of the outlet hydrological section of hulugou River Basin are regularly observed (the flow rate is measured by ls45a rotating cup type flow meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd., and the water level change is monitored in real time by hobo pressure type water level meter), the water level flow relationship is established, and the outlet flow of the river basin is calculated. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.
CHEN Rensheng, SONG Yaoxuan, LIU Junfeng, HAN Chuntan
1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the daily scale data from January 1, 2013 to December 31, 2013.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m
CHEN Rensheng, HAN Chuntan
1、 Data Description: the data includes the river temperature of the river section in No.2 catchment area of hulugou small watershed and the river section at the intersection of the East and West Branch ditches from July 2014 to September 2014. 2、 Sampling location: the coordinates of river section in No.2 catchment area are 99 ° 52 ′ 58.40 ″ e, 38 ° 14 ′ 36.85 ″ n. The cross section coordinates of the river at the junction of the East and West Branch ditches are 99 ° 52'45 "E, 38 ° 15'26.60" n.
MA Rui
1、 Data description The data include the rainfall in Qilian station of the upper reaches of Heihe River from May 2012 to June 2013 and the content of silica in the soil water of hulugou small watershed. 2、 Sampling location The sampling point of rainfall is located in the Institute of eco hydrological experiment and research, Institute of cold and drought, Chinese Academy of Sciences, hulugou small watershed, with the longitude and latitude of 99 ° 53 ′ 06.66 ″ E and 38 ° 16 ′ 18.35 ″ n. Soil water sampling point is about 300m above No.2 meteorological station of Chinese Academy of Sciences. The longitude and latitude of the sampling point are 99 ° 53 ′ 31.333 ″ e, 38 ° 13 ′ 50.637 ″ n. 3、 Test method The sample test method is to use hash DR2800 ultraviolet spectrophotometer to test the rainwater obtained from the rain gauge and the soil water collected from the sampling point.
CHANG Qixin, SUN Ziyong
1. Data overview: This data set is the daily scale meteorological gradient data of Qilian station from October 1, 2011 to December 31, 2011 (installed at the end of September 2011). The observation of vg1000 gradient observation system started on October 1, 2011, recording data every 30 mins, and finally generating daily scale data. Through the long-term monitoring of wind speed and direction, air temperature and humidity, radiation and other conventional meteorological elements, combined with high-precision, high scanning frequency data collector for data storage and processing analysis. 2. Data content: The main observation elements include four layers of air temperature, humidity and two-dimensional ultrasonic wind, rain and snow meter, eight layers of ground temperature, soil moisture, etc. 3. Space time scope: Geographic coordinates: longitude: longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m
HAN Chuntan, CHEN Rensheng
Based on the "western data center", the daily discharge from three field observation stations (zamashk, Yingluoxia, Qilian) since 1990-1995 is sorted out.
ZHANG Zhiqiang
The data includes the discharge data of the outlet river of No.2 catchment area of hulugou small watershed from July 24 to September 11, 2014 / 2015. Sampling location: the coordinates of river flow monitoring section are located at the outlet of No. 2 catchment area, near the red wall, with coordinates of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. The soil temperature monitoring depth in hulugou is 20cm, 50cm, 100cm, 200cm and 300cm. The monitoring depth of groundwater temperature is 10m. The observation frequency is 1 time / 1 hour. The time range of observation data is from May 13, 2015 to September 5, 2015. Sampling location: the soil temperature monitoring point in hulugou small watershed is located in the middle of the Delta, with the geographic coordinates of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n.
MA Rui
1. Data overview In 2011, the manual observation data set of standard meteorological field of Qilian station was used to observe various meteorological elements at 8:00, 14:00 and 20:00 every day. 2. Data content Data content includes dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum ground temperature and minimum ground temperature. 3. Time and space Geographic coordinates: longitude: 99.9e; latitude: 38.3n; altitude: 2980m
HAN Chuntan, CHEN Rensheng
1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2011 to November 2, 2011. 2. Data content: the flow data of the hydrological section at the outlet of hulugou, and the flow of the hydrological section at the outlet of the drainage basin is regularly observed at 08:00, 14:00 and 20:00 every day (the ls45a rotating cup type current meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd. is used for measurement). At the same time, hobo pressure water level gauge is used to monitor the change of water level in real time and establish the relationship between water level and discharge. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.
SONG Yaoxuan, LIU Junfeng, YANG Yong, QING Wenwu, LIU Zhangwen, HAN Chuntan
1. Data overview: This data set is the daily scale groundwater level data of Qilian station from November 1, 2011 to December 31, 2011. In October 2011, two groundwater monitoring wells were arranged in hulugou small watershed. Well 1 is located beside the general control hydrological section of hulugou watershed, with a depth of 12.8m and an aperture of 12cm. Well 2 is located in the east of the Delta, about 100m away from the river, with a depth of 14.7m and an aperture of 12cm. 2. Data content: U20hobo water level sensor is arranged in the groundwater well, which is mainly used to monitor the change of groundwater level and temperature in hulugou small watershed. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. 3. Space time scope: Geographic coordinates of well 1: longitude: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2974m (near the hydrological section at the outlet of the basin). Geographic coordinates of well 2: longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3204.1m (east side of the East Branch of the delta).
HAN Chuntan, CHEN Rensheng, SONG Yaoxuan, LIU Junfeng, YANG Yong, QING Wenwu, LIU Zhangwen
1. Data overview: In 2012, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e;Latitude: 38.3n;Height: 2980 m.
CHEN Rensheng, HAN Chuntan
1. Data overview: Eddy covariance system is a micrometeorological measurement method.It USES the principle of vorticity correlation to measure the material exchange and energy exchange of the atmosphere cushion surface with a fast response sensor.The core of open circuit eddy covariance system is composed of CR1000 data collector, CSAT3 3d ultrasonic wind speed and direction sensor, and li-7500 open circuit CO2/H2O gas analyzer (EC150).The eddy covariance system is a newly purchased instrument of this project, which takes a long time to order. It was installed in early October 2011, and the data is relatively short.This data set is the vorticity covariance data of qilian station from October 1, 2011 to December 31, 2011 at 30min. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration (mg/m^3), water vapor concentration (g/m^3), pressure press (KPa).The data sampling rate is 10Hz per second. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the scale data from January 1, 2011 to December 31, 2011.It mainly includes two layers of temperature, humidity and wind, six layers of soil water content, precipitation, 5cm geothermal flux, total radiation, seven layers of soil temperature, CO2 and air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m
CHEN Rensheng, HAN Chuntan
The data set contains all single glacial reserves (in KM3) in the Tibetan Plateau of 1970s and 2000s. This data set comes from the result data of the paper entitled "consolidating the Randolph glacier inventory and the glacier inventory of China over the Qinghai titanium plate and investigating glacier changes since the mid-20th century". The first draft of this paper has been completed and is planned to be submitted to earth system science data. The 1970s basic glacier catalog data in the dataset is extracted from Randolph glacier Inventory data set, 2000s basic glacial catalogue is from China's second glacial catalogue data set. Based on the glacial boundary extracted from the two data sets and combined with the grid based bedrock elevation data set (https://www.ngdc.noaa.gov/mgg/global/global.html, DOI: 10.7289/v5c8276m) and the glacial table obtained by a slope dependent method Based on the surface elevation data set, the single glacier reserves in the two catalogues are calculated. In addition, the calculation results of single glacier reserves obtained in this study have been compared and verified with the calculation results of partial glacier reserves, relevant remote sensing data sets, and the global glacier thickness data set based on the average of multiple glacier model sets in multiple directions, and the errors in the calculation results have also been quantified. The establishment of the data set is expected to provide the data basis for the future regional water resources estimation and glacier ablation research, and the acquisition of the data also provides a new idea for the future glacier reserves research.
WANG Zhongjing
ET (ET) monitoring is crucial to agricultural water resource management, regional water resource utilization planning and socio-economic sustainable development.The limitations of traditional ET monitoring methods mainly lie in that they cannot observe a large area at the same time and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and they can neither provide surface ET data, nor provide ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by using remote sensing. The characteristics of remote sensing information are that it can not only reflect the macroscopic structure characteristics of the earth surface, but also reflect the microscopic local differences. Version 2.0 (second edition) of the surface evapotranspiration data set of the heihe river basin from 2000 to 2013 is based on multi-source remote sensing data and the latest ETWatch model is adopted to estimate the raster image data. Its temporal resolution is monthly scale and the spatial resolution is 1km scale. The data covers the whole basin in millimeters.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: Monthly cumulative ET value file name: heihe-1km_2013m01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, m01 represents the month of January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-1km_2013s01_eta.tif Heihe refers to heihe river basin, 1km refers to the resolution of 1km, 2013 refers to 2013, s01 refers to january-march, is the first quarter, eta refers to the actual evapotranspiration data, and tif refers to the data in tif format. Annual cumulative value file name: heihe-1km_2013y_eta.tif Among them, heihe represents heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.
WU Bingfang
ET(Evapotranspiration)monitoring is essential for agricultural water management, regional water resources utilization planning, and socio-economic sustainable development.The limitations of the traditional monitoring ET method are mainly that large-area simultaneous observations cannot be made and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and it is unable to provide ET data on the surface, nor to provide the ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by remote sensing. The characteristics of remote sensing information are that it can reflect both the macroscopic structural characteristics of the Earth's surface and the microscopic local differences. Monthly evapotranspiration datasets (2000-2013) with 30m spatial resolution over oasis in the Middle Reaches of Heihe River Basin Version 1.0 are based on multi-source remote sensing data. The latest ET Watch model is used to estimate the raster image data. Its temporal resolution is monthly and spatial resolution is 30 meters. The data cover the middle reaches of Zhangye oasis area in millimeters. The data types include month, quarter, and year data. The projection information of the data is as follows: Albers equivalent conical projection, Central meridian: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinate west deviation: 4000000 meters. The file naming rules are as follows: Monthly cumulative ET value file name: heihe-midoasis-30m_2013m01_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, m01 indicates January, eta indicates actual evapotranspiration data, and tif indicates that the data is in tif format; The ET value file for each season is named: heihe-midoasis-30m_2013s01_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, s01 indicates 1-3 months, for the first quarter, eta indicates actual evapotranspiration data, and tif indicates that the data is in tif format; The annual cumulative value file name: heihe-midoasis-30m_2013y_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, y indicates the year, eta indicates the actual evapotranspiration data, and tif indicates that the data is in tif format.
WU Bingfang
This dataset includes soil moisture, soil temperature and land surface temperature observations of 50 WATERNET wireless sensor network (WSN) nodes during the period from May to September 2012, which is one type of WSN nodes in the Heihe eco-hydrological wireless sensor network (WSN). The WATERNET located in the 4×4 MODIS grids in the observation matrix in the Zhangye oasis. Each WATERNET node observes the soil moisture, soil temperature, soil conductivity and complex dielectric constant at 4 cm and 10 cm depths by the Hydra Probe II sensor. There are 29 nodes among the WATERNET with the SI-111 sensor at 4 m height to measure the surface radiance temperature. The operational observation interval is 10 minutes, and the intensive observation mode with 1 minute is activated during 00:00-04:30, 08:00-18:00 and 21:00-24:00 (UTC+8), in order to synchronize with airborne or satellite-borne remote sensors. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "WATERNET_Data_Document_HRBMiddle.docx”.
KANG Jian, Wang Zuocheng, Dong Cunhui, LI Xin, MA Mingguo
This data set includes the 2014 observation data of 9 water net nodes in the 5.5km × 5.5km observation matrix (red box in the thumbnail) of Yingke / Daman irrigation area in the middle reaches of Heihe River. The nine nodes contain 4cm and 10cm two-layer hydro probe II probes to observe the main variables such as soil moisture, soil temperature, conductivity and complex permittivity; the si-111 infrared temperature probe is set up at 4m height to observe the surface radiation infrared temperature of the underlying surface. The observation time frequency is 5 minutes. This data set can provide spatiotemporal continuous observation data set for remote sensing estimation of key water and heat variables of heterogeneous surface, remote sensing authenticity test, ecological hydrology research, irrigation optimization management and other research. Please refer to "2014 middle reaches of Heihe River waternet data document 20141231. Docx" for details
KANG Jian, LI Xin, MA Mingguo
This data set includes the observation data of 40 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River since January 2014. Soil moisture of 4cm, 10cm and 20cm is the basic observation of each node; 19 nodes include the observation of soil moisture and surface infrared radiation temperature; 11 nodes include the observation of soil moisture, surface infrared radiation temperature, snow depth and precipitation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. Please refer to "waternet data document 20141206. Docx" for details
KANG Jian, LI Xin, MA Mingguo
Correlation data of vegetation functional traits with topographic factors and pastoral animal husbandry activity factors, including: 1) observation data of main functional traits of 2-3 kinds of grassland plants in elevation, slope and slope upward; 2) correlation analysis data of vegetation functional traits and topographic factors; 3) correlation analysis data between vegetation functional traits and livestock activity intensity factors.
ZHAO Chengzhang
The data include different observation data of Sunan, Gansu Province: 1) The soil properties of grassland under different management measures, soil compactness, water permeability and soil moisture content of 4-5 grazing intensity grassland; 2) The observation data of soil compactness, permeability and water content of different grazing management measures; 3) Correlation analysis data of grassland community characteristic productivity and soil moisture; 4) Correlation analysis data of height, coverage, biomass, flower shape, tiller and leaf characters of main plants with soil water content;
ZHAO Chengzhang
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Heihe River Basin water system map is one of the hydrological and water resources part of the atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data sources: river data of Heihe River Basin, reservoir distribution data of Heihe River Basin, residential area data of Heihe River Basin in 2009, administrative boundary data of one million Heihe River Basin in 2008, Lake data of Heihe River Basin and other basic geographic data. The upper reaches of Heihe River Basin are located in Qilian County, Haibei Tibetan Autonomous Prefecture, Qinghai Province, and the northern foot of Qilian Mountain in Zhangye, Jiuquan City, Sunan and Subei counties of Gansu Province. The middle reaches are located in Shandan, Minle, Ganzhou, Linze, Gaotai, Sunan, Suzhou, Jiayuguan and Yumen counties of Gansu Province. The lower reaches are located in Jinta, Gansu Province, Ejina Banner and Alxa Right Banner of Inner Mongolia, involving three provinces (autonomous regions), 16 cities and counties (District, banner), 56 towns, 45 townships and 4 Sumu. Table 1 shows the information about the administrative divisions of Heihe River Basin.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
1. Data overview: This data set is the scale meteorological gradient data of qilian station from January 1, 2013 to December 31, 2013 (installed at the end of September 2011).VG1000 gradient observation system carries out long-term monitoring of wind speed, wind direction, air temperature, humidity, radiation and other conventional meteorological elements, and carries out data storage and processing analysis in combination with the data collector with high precision and high scanning frequency. 2. Data content: The main observation factors include four layers of air temperature, humidity and two-dimensional ultrasonic wind, rain and snow volume meter, eight layers of ground temperature, soil moisture content, etc. 3. Space and time range: Geographical coordinates: longitude: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m
CHEN Rensheng, HAN Chuntan
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.
WANG Xufeng, KANG Jian, Li Dazhi, Wang Zuocheng, Dong Cunhui, LI Xin, MA Mingguo
Some economic data of Zhangye City from 2001 to 2012 include: per capita GDP, GDP, the proportion of fiscal revenue to GDP, per capita fiscal revenue, industrial contribution rate, the proportion of town population to total population, the proportion of added value of tertiary industry to GDP, the proportion of added value of secondary industry to GDP, industrial comprehensive benefit index, contribution rate of total assets, contribution rate of fixed assets, social labor productivity, G DP growth rate
ZHANG Dawei
1. Data overview: This data set is the groundwater level data of qilian station from January 1, 2013 to December 31, 2013.Well no. 1 is located at the side of the general controlled hydrologic section of the cucurbitou basin, with a depth of 12.8m and an aperture of 12cm.The second well is located to the east of the delta about 100m away from the river. The depth of the well is 14.7m and the aperture is 12cm. 2. Data content: U20-hobo water level sensor is installed in the underground well, which is mainly used to monitor the groundwater level changes in the small gourgou watershed. The data are daily scale data. 3. Space and time range: Geographical coordinates of well no. 1: longitude: longitude: 99° 53’e;Latitude: 38°16 'N;Elevation: 2974m (near the hydrological section at the outlet of the basin). Geographical coordinates of well no. 2: longitude: 99° 52’e;Latitude: 38°15 'N;Altitude: 3204.1m (east of the eastern branch of the delta).
CHEN Rensheng
1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2013 to December 31, 2013. 2. Data content: at 08:00, 14:00 and 20:00 every day, the flow rate and water level change of the outlet hydrological section of hulugou River Basin are regularly observed (the flow rate is measured by ls45a rotating cup type flow meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd., and the water level change is monitored in real time by hobo pressure type water level meter), the water level flow relationship is established, and the outlet flow of the river basin is calculated. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.
CHEN Rensheng, HAN Chuntan, SONG Yaoxuan
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Comprehensive atlas of ecological hydrology of Heihe River Basin: topographic map of Heihe River Basin, scale 1:2500000, positive axis isometric conic projection, standard latitude: 25 47 n. Data source: 1:1 million landform data of Heihe River Basin, river data of Heihe River Basin, residential area data of Heihe River Basin, administrative boundary data of Heihe River Basin. According to the distribution, topography and topography of Heihe River Basin, it can be divided into four areas: high mountain area of Qilian Mountain, plain area of Hexi Corridor, middle mountain area of North Mountain of corridor and Ejina Basin.
ZHAO Jun, WANG Xiaomin, FENG Bin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The scale of Zhangye irrigation canal system map in Heihe River Basin is 1:2500000, the normal axis is equal to the conic projection, and the standard latitude is 2547 n. Data sources: Zhangye irrigation canal system data of Heihe River Basin, administrative boundary data of one million Heihe River Basin in 2008, and Heihe River Basin in 2009. The channels of Heihe River Basin are mainly distributed in Zhangye, which are divided into five levels: dry, branch, Dou, Nong and Mao.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The snow day map of Heihe River Basin is one of the hydrological and water resources in the atlas, with the scale of 1:2500000, the positive axis and equal volume conic projection, and the standard latitude of 25 47 n. Data source: this map shows the distribution of annual average snow days in 10 hydrological years in the whole Heihe River Basin from August 1, 2001 to July 31, 2011. The original data comes from MODIS daily snow products modisa 1 and myd10a1 provided by the National Snow and Ice Data Center (NSIDC) of the United States, as well as the long-term series snow depth data set of China provided by the scientific data center for cold and dry regions (WESTDC).
WANG Jianhua, ZHAO Jun, WANG Xiaomin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Comprehensive atlas of ecological hydrology of Heihe River Basin: landform type map of Heihe River Basin, scale 1:2500000, positive axis isometric conic projection, standard latitude: 2547 n. Data source: 1 million topographic map of Heihe River Basin, administrative boundary data of Heihe River Basin, river data set of Heihe River Basin, residential area data of Heihe River Basin and other basic data.
ZHAO Jun, WANG Xiaomin, FENG Bin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Comprehensive ecological and hydrological Atlas of Heihe River Basin: the main geomorphic form and genetic type of Heihe River Basin, scale 1:2500000, positive axis and equal conic projection, standard latitude: 25 47 n. Data source: 1:1 million landform data of Heihe River Basin, river data of Heihe River Basin, residential area data of Heihe River Basin, administrative boundary data of Heihe River Basin.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
The hydrological monitoring of Picea crassifolia and main shrub vegetation types, including canopy interception, soil moisture content and stemflow, was carried out at different altitude gradients in Pailugou catchment of Qilian Mountain. The monitoring time was the dynamic monitoring of growth season in 2012 and 2013.
LIU Xiande
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the average surface evapotranspiration of the heihe river basin with a resolution of 250m in 8 days from may to September 2012.The coordinate system is the projection of equal latitude and longitude, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.8 days data using synthetic way of storage, the data format for GEOTIFF, naming: 2012 ddd_evapotranspiration. Tif, including a DDD, ordinal number, for example 2012121 _evapotranspiration. Tif said 2012 day ordinal number is 121-128 days, the average surface evaporation unit is mm/d.The data type is single-precision floating point with an invalid value of -9.
JIA Li
According to the characteristics of the selected field and its surrounding area, a trime tube is arranged in the corn field, and 5 trime tubes are arranged in a direction perpendicular to the field path. When monitoring soil moisture content in the TDR vertical direction, the unit is every 10cm. Monitor down. Location: N 38 ° 52′27.6 ″ E 100 ° 21′14.0 ″ The submitted data includes the water content of the farmland and its surrounding soil (TDR monitoring) after three irrigations in a selected farmland in Yingke Irrigation District, encrypted monitoring after irrigation, one group every 3 hours within 24 hours, and 3 groups per day for the next 5 days. -10 days are two groups per day, and 10-15 days are one group per day.
HUANG Guanhua, JIANG Yao
The field experiments of water consumption and irrigation water productivity of corn and cotton were arranged in 2012 and 2013, and the field experiments of irrigation water productivity of corn and sunflower under different mulching and cultivation methods were arranged in 2014. The characteristics of water consumption and irrigation water demand of three crops under different soil conditions, as well as the relationship between key soil properties and crop yield and irrigation water productivity were obtained.
SU Yongzhong
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the daily surface evapotranspiration of the heihe river basin at 1km from 2009 to 2011.The coordinate system is the longitude and latitude projection, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.Using daily data storage, data format for GEOTIFF, naming: yyyyddd_EvapoTranspiration. tif, including yyyy for years, DDD for ordinal.The data type is single-precision floating point in mm/d and the invalid value is -9.
JIA Li
This data is SWAT scenario simulation data in the middle and upper reaches of Heihe River Basin. Scenarios include historical trend scenario (HT), ecological protection scenario (EP), strict ecological protection scenario (SEP), economic development scenario (ED) and rapid economic development scenario (red). Firstly, the dyna_clue model is used to simulate the land use change under different scenarios, and then the simulated land use map under different scenarios is imported into the SWAT model to simulate the daily and monthly runoff scenario data of the upstream outlet (Yingluo gorge) and the middle outlet (Zhengyi gorge) of the Heihe River Basin (assuming other conditions are the same). The period is 2011-2030. The data format is excel.
NAN Zhuotong, ZHANG Ling
The “Eco-Hydrology Integrated Atlas of the Heihe River Basin ” was supported by the major program: Synthetic Research on the Eco-hydrological Process of the Heihe River Basin. It provided data collation and service for Synthetic Research on the Eco-hydrological Process of the Heihe River Basin. The Atlas will provide researchers with a comprehensive and detailed introduction of the background and basic data sets of the Heihe River Basin. Eco-Hydrology Integrated Atlas of the Heihe River Basin: Remote Sensing Mosaicing of the Heihe River Basin, scale 1:2500000, positive-axis equivalence conical projection, standard parallel: north latitude 25 47 Data source: Landsat TM Mosaic Image of the Heihe River Basin in 2010, Heihe River Basin Boundary,River Network Dataset of the Heihe River Basin, The Resident Site Distribution Data of the Heihe River Basin, etc.
WANG Jianhua, ZHAO Jun
This data includes FAPAR and LAI data of ground sample points collected in 2012.The acquisition equipment were SunScane and lai-2000.Among them, the spread value was obtained by FAPAR measurement for 4 times.The sampling sites were located around zhangye on July 15, 2012 at solstice on July 4, 2012, including arol, linze, jiulongjiang forest farm, danoguchi and wuxing village.A total of 637 sets of data were measured.
FAN Wenjie
"Hydrological ecological economic process coupling and evolution of Heihe River Basin Management under the framework of water rights" (91125018) project data collection 2 - Dunhuang comprehensive plan for rational utilization of water resources and ecological protection (2011-2020) Planning documents mainly include: 1. Current situation and existing problems of regional water resources utilization; 2. Guiding ideology, basic principles and planning objectives; 3. Analysis of economic, social and ecological water demand; 4. Plan for water resources allocation; 5. Construction of water right system; 6. Main engineering measures; 7. Environmental impact arrangement.
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The hydrogeological map of Heihe River Basin is one of the chapters on hydrology and water resources in the atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data source: hydrogeological map of Hexi Corridor (1:50000) issued by Gansu Provincial Institute of address survey. According to the survey conducted by Gansu Provincial Institute of geology, 1516 hydrogeological boreholes (119049 meters in total) were collected and sorted out; and 6947 groundwater extraction wells.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
"Coupling and Evolution of Hydrologic -Ecologic-Economic Processes of the Heihe River Basin Under the Framework of Water Rights" (91125018) Project data collection 1 - SWater Resources Improvement Plan of Shiyang River Basin 1. Data Overview:The improvement plan of Shiyang River Basin was implemented in 2007 for river basin comparison. 2. Data Content: The released plan.
WANG Zhongjing
This dataset contains data for comprehensive monitoring in the small watershed of Sumu Jaran in the Badain Jaran Desert from 2012 to 2013. The small watershed of Sumu Jaran is composed of two lakes, namely North Lake and South Lake of Sumu Jaran. The latitude and longitude range is: 39° 46' 18.24" to 39° 49' 17.25" north latitude, 102° 23' 40.53 " to 102° 26' 59.27" east longitude. The observation instruments are mainly arranged around the South Lake of Sumu Jaran, including scintillator (BLS450), automatic weather station (net radiation, rainfall, wind speed, wind direction, air humidity, pressure, E601 type evaporation dish), soil monitoring station (soil temperature, water content and tension pF-meter) and one groundwater monitoring hole. The data released this time are the monitoring results from September 2012 to December 2013. Post-monitoring data will be released in version 2.0. For the layout, coordinates, and type of the instrument, see the layout of the small watershed monitoring system.pdf, coordinates of the monitoring point.xls, and location and equipment of the monitoring point.tif.
HU Xiaonong, WANG Xusheng
In the transition zone from Heihe River to desert oasis in Pingchuan oasis of Linze, soil texture, bulk density, field capacity, saturated capacity, soil organic matter, total nitrogen and inorganic carbon content of 118 plots were studied. PH value, conductivity, total carbon, SiC, C / N were monitored to determine the physical and chemical properties of 0-20cm arable soil, and the soil particle composition of 0-20cm and 20-80cm soil layers.
SU Yongzhong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn