This data set includes the social, economic, resource and other relevant index data of Gansu, Qinghai, Sichuan, Tibet, Xinjiang and Yunnan in the Qinghai Tibet Plateau from 2000 to 2015. The data are derived from Gansu statistical yearbook, Qinghai statistical yearbook, Sichuan statistical yearbook, Xizang statistical yearbook, Xinjiang statistical yearbook, Yunnan statistical Yearbook China county (city) socio economic statistical yearbook And China economic network, guotai'an, etc. The statistical scale is county-level unit scale, including 26 county-level units such as Yumen City, Aksai Kazak Autonomous Region and Subei Mongolian Autonomous County in Gansu Province, 41 county-level units such as Delingha City, Ulan county and Tianjun County in Qinghai Province, 46 counties such as Shiqu County, Ruoergai County and ABA County in Sichuan Province, and 78 counties such as Ritu County, Gaize county and bango County in Tibet, 14 counties including Wuqia County, aktao county and Shache County in Xinjiang Province, and 9 counties including Deqin County, Zhongdian county and Fugong County in Yunnan Province; Variables include County GDP, added value of primary industry, added value of secondary industry, added value of tertiary industry, total industrial output value of Industrial Enterprises above Designated Size, total retail sales of social consumer goods, balance of residents' savings deposits, grain output, total sown area of crops, number of students in ordinary middle schools and land area. The data set can be used to evaluate the social, economic and resource status of the Qinghai Tibet Plateau.
CHEN Yizhong
The influence of deformation and metamorphism of post volcanic massive sulfide on the trace elements and sulfur lead isotopic composition of sulfide is still unclear. The Keketale VMS Pb Zn (- Ag) deposit provides an opportunity to solve the above problems; Five ore samples from No.7 and No.9 orebodies were crushed and screened for lead isotope analysis of bulk minerals, 17 polished thick sulfide samples were used for in-situ trace element and sulfur lead isotope analysis, 66 trace element determination points were analyzed, and 25 sulfur isotope points were determined; A total of 18 point pairs of different minerals were selected for lead isotope analysis, and LA-ICP-MS method was used
YU Pengpeng, ZHENG Yi
The data set records the statistical data of the development and utilization of mineral resources in Qinghai Province from 2002 to 2012. The data is divided by mineral name, number of mining enterprises, number of employees, annual mineral output, total industrial output value, comprehensive utilization output value and total profit. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains 11 data tables with the same structure. For example, the data table in 2011 has seven fields: Field 1: mineral name Field 2: number of mining enterprises Field 3: number of employees Field 4: annual ore production Field 5: gross industrial output value Field 6: comprehensive utilization output value Field 7: total profit
Qinghai Provincial Bureau of Statistics
1) Establish the material flow analysis table and air pollutant emission table of Xining Special Steel Co., Ltd. (Xining Special Steel) in 2019 ,to provide support for the analysis and distribution of pollutant emission sources of regional iron and steel industry. 2) The data comes from the official website of Xining Special Steel, field survey and statistical data. Based on the official data and field survey results, some results are calculated by the relevant industry parameters 3) Due to the different sources of ore raw materials, the calculation is only for the steel production process in 2019 4) Xining Special Steel is a typical enterprise in the iron and steel industry of Qinghai Province. Its crude steel production is more than 90% of that of Qinghai Province. Therefore, the data represent the material flow characteristics of the iron and steel industry in Qinghai Province
LI Xiaojun
1. The data content is the monthly groundwater level data measured between the tail of chengdina River, Kuqa Weigan River and Kashgar river of Tarim River, which is required to be the water level data of 30 wells, but the number of wells in this data reaches 44; 2. The data is translated into CSV through hobo interpretation, and the single bit time-lapse value is found through MATLAB, and then extracted and calculated through Excel screening, that is, through the interpretation of original data, through the communication Out of date and daily data, calculated monthly data; 3. Data is measured data, 2 decimal places are reserved, unit is meter, data is accurate; 4. Data can be applied to scientific research and develop groundwater level data for local health.
CHEN Yaning, HAO Xingming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn