This data-set contains the field measurements of meteorological parameters,trace gases, PM2. 5/PM10, particle number size distribution (12-530 nm), aerosol chemical composition (sulfate and nitrate in PM2.5) at Lulang and Xihai (29.8oN, 94.7oE, 3300 m a.s.l. and 36.9oN, 100.9oE, 3080 m a.s.l., respectively) in southeastern and northeastern part of Tibetan Plateau. The time period of this data-set is from April to May of 2021 and June of 2021. The data-set comes from two measurement campaigns in 2021. The mobile observation platform of Nanjing University, including various online measurement instruments, was used to conduct the field measurements. The data in this data-set is finalized data with the data correction according to the instruments calibration and data quality control based on the data closure research results between multiple instruments. The atmospheric components data, such as trace gases, PM2.5/PM10, particle number size distribution, aerosol chemical composition, are the observation data under actual atmospheric pressure conditions without pressure corrections. The data-set can be directly used to analyze the atmospheric physics and chemistry related scientific issues in the southeastern and northeastern part of the Tibetan Plateau. This data-set supplements the lack of field observation data related to the atmospheric environment in the northeastern part of the Tibetan Plateau.
NIE Wei, CHI Xuguang
As the "water tower" in Asia, the Qinghai Tibet Plateau provides water resources for major rivers in Asia. BC aerosol emitted from biomass and fossil fuel combustion has a strong absorption effect on radiation, which has an important impact on the energy budget and distribution of the earth system. It is an important factor of climate and environmental change. Black carbon aerosols emitted from the surrounding areas of the Qinghai Tibet Plateau can be transported to the interior of the plateau through the atmospheric circulation and settle on the snow and ice surface, which has an important impact on precipitation and glacier material balance. Black carbon meters are set up at five stations on the Qinghai Tibet Plateau, and aethalometer is used to measure the content of Atmospheric Black Carbon online. The data time resolution is day by day, which provides a data basis for assessing the impact of black carbon on the climate and environment of the Qinghai Tibet Plateau and the cross-border transmission of air pollutants. This data is an update of the previously released observation data of five stations of atmospheric black carbon content on the Qinghai Tibet Plateau (2018) and the observation data of five stations of atmospheric black carbon content on the Qinghai Tibet Plateau (2019). The information of the five sites is as follows: Namuco: 30 ° 46'N, 90 ° 59'e, 4730 m a.s.l Everest station: 28.21 ° n, 86.56 ° e, 4276 m a.s.l Southeastern Tibet: 29 ° 46'N, 94 ° 44'e, 3230 m a.s.l Ali station: 33.39 ° n, 79.70 ° e, 4270 m a.s.l Mustard: 38 ° 24'n, 75 ° 02'e, 3650 m a.s.l
The data set contains atmospheric aerosol PM10, PM2.5 and PM1 data and ambient air temperature and humidity from meduo National Climate Observatory (29 ° 18'n, 95 ° 19'e, 1305.0m above sea level) in meduo region, Tibet. The observation instrument is grimm-180 environmental particle analyzer. The observation time is from April 8, 2021 to May 22, 2021. The data time resolution is 10 seconds. The abnormal data generated during the operation of the instrument has been eliminated. During the observation period, due to the influence of the South Asian monsoon, the air humidity is high, and the surrounding of the observation site is less disturbed by human activities. This data set provides basic data for studying the physical characteristics, temporal and spatial variation characteristics and source analysis of atmospheric dust aerosols in Southeast Tibet. Supported project: Topic 2 of the sixth research task of the second comprehensive scientific investigation of the Qinghai Tibet Plateau (2019qzkk0602).
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
The data set contains the scattering coefficient data of atmospheric aerosols at 450nm, 550nm and 700nm bands from meduo National Climate Observatory (29 ° 18'n, 95 ° 19'e, 1305.0m above sea level) in meduo region, Tibet. The observation instrument is an integral turbidimeter. The observation time is from April 8, 2021 to May 22, 2021. The time resolution of the data is 10 seconds. The abnormal data generated during the operation of the instrument has been eliminated. During the observation period, due to the influence of the South Asian monsoon, the air humidity is high, and the surrounding of the observation site is less disturbed by human activities. This data set provides basic data for studying the physical characteristics, temporal and spatial variation characteristics and source analysis of atmospheric dust aerosols in Southeast Tibet. Supported project: Topic 2 of the sixth research task of the second comprehensive scientific investigation of the Qinghai Tibet Plateau (2019qzkk0602).
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
The data set contains hourly data of atmospheric black carbon aerosol concentrations at the meduo National Climate Observatory (29 ° 18'n, 95 ° 19'e, altitude 1305.0m) in meduo, Tibet. The observation instrument is ae31, and the observation time is from April 9, 2021 to May 20, 2021. The abnormal data generated in the sampling process has been eliminated. During the observation period, due to the influence of the South Asian monsoon, the air humidity is high, and the surrounding of the observation site is less disturbed by human activities. This data set provides basic data for studying the physical characteristics, temporal and spatial variation characteristics and source analysis of atmospheric black carbon aerosols in Southeast Tibet.
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
The Qinghai Tibet Plateau is surrounded by regions with high global carbon aerosol emissions, and the surrounding black carbon and brown carbon can be transmitted to the plateau. Light absorbing black carbon and brown carbon have warming effect, and their settlement on the surface of ice and snow will also accelerate the melting of glaciers and snow. At present, there is little research on brown carbon in this area, and the research on the correlation between brown carbon components and optics is in its infancy. Therefore, the study of Atmospheric Black Carbon and brown carbon in the Qinghai Tibet Plateau has important climate and environmental significance. The aerosol optical absorption characteristics of Atmospheric Black Carbon and brown carbon were obtained by observing in different regions of the Qinghai Tibet Plateau. It reveals the spatial differences of optical absorption of black carbon, primary Brown carbon and secondary Brown carbon aerosols in different regions of the Qinghai Tibet Plateau.
ZHU Chongshu
Due to the unique lifestyle of residents and single fuel source, the main fuel in the pastoral area of Qinghai Tibet Plateau is dried yak dung. Yak dung is collected in piles or moulded into dung cake, which is stored after air drying. When used for cooking and heating in residences, it is always burned in cast iron stove. The carbonaceous particles released by yak dung burning are almost the only black carbon aerosol emission source in the vast pastoral area besides motor vehicles. This data set was established by measuring the morphology, particle size and element composition of single particles emitted from yak dung combustion in typical pastoral areas of the Qinghai Tibet Plateau. The sampling sites included Dangxiong County in Naqu and Dazi County in Lhasa. The field sampling location were the chimney outlet of residential homes. The particles were collected on the polycarbonate filter membrane and analyzed in the laboratory by means of computer-controlled scanning electron microscope and X-ray energy spectrometer. The environmental single particles emitted from yak dung combustion in pastoral areas include soot aggregates, tar balls, heavy metals containing carbonaceous particles, mineral dust, and soluble salt particles. This data set includes the numer percentages, particle size and their shape factor (aspect ratio, roundness and form factor) of various types of particles with statistical significance, It is not only an effective supplement to the basic data of human activities affecting the atmospheric environment, but also has potential significance for evaluating their optical characteristics, radiation effects, health effects and environmental impact of local source carbonaceous aerosols on the plateau.
HU Tafeng, WU Feng, ZHU Chongshu, DAI Wenting, WANG Qiyuan, ZHANG Ningning
The data set is from Gaomeigu area in Lijiang, Yunnan Province. The longitude, latitude and altitude of Gaomeigu area are 100 E ° 01 ′ 51 ″, 26 n ° 42 ′ 32 ″, altitude 3200m. The data set includes: 1. Continuous observation of the mass concentration of fusible chemical components in the atmosphere, including organic matter, nitrate, sulfate, chloride and ammonia. The measurement instrument is the aerosol chemical composition on-line monitor (ACSM). The observation period is from 00:29 on March 13, 2018 to 01:27 on April 7, 2018, and the time resolution is 30 minutes. The intermediate instrument runs well, and the data is missing occasionally. The data file contains the mass concentration data of each component measured by the instrument. 2. Continuously observe the mass concentration of black carbon in the atmosphere. The measuring instrument is aethalometer ae33 black carbon instrument produced by Magee company. The observation period is from 00:00 on March 14, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the information of the instrument, the measured mass concentration data of black carbon and various parameters of the instrument, including temperature, pressure, flow rate, etc. 3. Continuously observe the mass concentration of nitric oxide and nitrogen oxides in the atmosphere. The measuring instrument is the NOx analyzer produced by Thermo Fisher company. The observation period is from 00:00 on April 10, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the mass concentration data of NOx and no gas measured by the instrument. 4. Continuously observe the mass concentration of ozone in the atmosphere. The measuring instrument is the 49i ozone analyzer produced by Thermo Fisher company. The observation period is from 00:00 on March 15, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the mass concentration data of ozone gas measured by the instrument. 5. Continuously observe the mass concentration of sulfur dioxide in the atmosphere. The measuring instrument is sulfur dioxide analyzer produced by Thermo Fisher company. The observation period is from 00:00 on March 15, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the mass concentration data of sulfur dioxide gas measured by the instrument. Supported project: the second comprehensive scientific expedition to the Qinghai Tibet Plateau 2019qzk0602.
WANG Qiyuan, ZHANG Ningning, ZHU Chongshu, HU Tafeng, WU Feng, DAI Wenting, RAN Weikang
The surface PM2.5 concentration data of Tibet Plateau is named by date (YYYYMMDD). Each NC file contains one day's data, which is composed of PM2.5 concentration, longitude, latitude, and time information of the area (the corresponding variables in the data are named with PM2.5, lon, lat, time). The data inversion relies on the reanalysis data MERRA-2 released by NASA and the AOD product of Multi-angle Imaging SpectroRadiometer (MISR). MERRA-2 is mainly based on NASA GMAO Earth system model version 5 (GEOS 5). The algorithm is able to assimilate all the in-situ and re- motely-sensed atmospheric data. This dataset mainly focuses on the aerosol field of MERRA-2. This is the first multi-decadal reanalysis within which meteorological and aerosol observations are jointly assimilated into a global assimilation system. MISR views Earth with cameras pointed in 9 different directions, which can help us know the amount of sunlight that is scattered in different directions under natural conditions. The main data products used in this data algorithm are MERRA-2 aerosol analysis product (M2T1NXAER) and MISR Level 3 version 4 global aerosol products (MIL3DAEN_4). Firstly, the ratio of PM2.5 to AOD in each grid was calculated by using the aerosol information provided by MERRA-2. Second, the PM2.5 concentration of the grid was calculated by multiplying the AOD of MISR by the ratio. The mean prediction error of PM2.5 concentration obtained by this method is within 20 μg/m3. The corresponding PM2.5 products can be used for the assessment of particulate pollution in the Tibet Plateau.
FU Disong
This data-set contains the field measurements of meteorological parameters,trace gases, PM2. 5/PM10, particle number size distribution (12-530 nm), aerosol chemical composition (sulfate, nitrate and heavy metal components in PM2.5) at Geermu and Xihai (36.4oN, 94.8oE, 2800 m a.s.l. and 36.9oN, 100.9oE, 3080 m a.s.l., respectively) and the mobile measurements of trace gases in northeastern part of Tibetan Plateau. The time period of this data-set is from September to October in 2019 and 2020. The data-set comes from two measurement campaigns in 2019 and 2020. The mobile observation platform of Nanjing University, including various online measurement instruments(Duvas-DV3000,microAeth®-MA200,Vaisala weather probe), was used to conduct the field measurements. The data in this data-set is finalized data with the data correction according to the instruments calibration and data quality control based on the data closure research results between multiple instruments. The atmospheric components data, such as trace gases, PM2.5/PM10, particle number size distribution, aerosol chemical composition, are the observation data under actual atmospheric pressure conditions without pressure corrections. The data-set can be directly used to analyze the atmospheric physics and chemistry related scientific issues in the northeastern part of the Tibetan Plateau. This data-set supplements the lack of field observation data related to the atmospheric environment in the northeastern part of the Tibetan Plateau.
NIE Wei, CHI Xuguang
The data of aerosol optical depth were daily collected at Qomolangma Station for Atmospheric and Environmental Observation and Research with An automatic sun/sky scanning radiometer (Cimel 318), over the period from Jan. to Dec. The data were measured at 2020. 340, 380, 440, 500, 675, 870 and 1020 nm channel with uncertainty of 0.01 - 0.02.
CONG Zhiyuan
(1) Daily average of atmospheric black carbon concentration(ng/m3) at the NASDE. (2) Instruments: Aethalometer (AE33). This instrument collected data with a resolution of one minute. The abnormal data collected at the start-up or faulty stage were manually excluded before analysis further. We generated daily average based on the National Ambient Air Quality Standard of China (GB 3095-2012). (3) From May to November, 2018, a wildlife Conservation Station nearby was constructed, which frequentlyexposed largeamounts of particles, thus the BC concentration was far beyond that collected in the same season of other years. The data in this period shouldbeusedwith greatcaution. Due to problems in the instrument or electric power supply, thedata was lost in other periods. (4) The instrument was placed at the Ngari Station for Desert Environment Observation and Research (79.70° E, 33.39°N, 4270 m above sea level).
XU Baiqing, ZHAO Huabiao, YANG Song
1) The optical depth, vertical mass concentration and extinction coefficient of dust, sulfate, organic carbon, black carbon and sea salt aerosols and total aerosols were measured; 2) Data source: numerical simulation, processing method: Based on CALIPSO satellite vertical observation and global aerosol model, it is generated by four-dimensional local ensemble transformation Kalman filter assimilation method; 3) The data quality is good; 4) It can also be used to study the spatiotemporal distribution of aerosols and their spatial and temporal characteristics of precipitation and their assimilation.
DAI Tie, CHENG Yueming
The data set contains the mass concentration of PM2.5 (particulate matter less than 2.5 μ m) in the atmosphere of Shiquanhe national reference climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m). The measuring instrument is RP 1400A vibrating balance micro balance (TEOM). The observation period is from July 8, 2019 to August 2, 2019, and the time resolution is 1 minute. The data is stored in TXT format.
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
The data set is the observation data of Shiquanhe town in Ali area. The longitude, latitude and altitude of the station in Ali area are 32.50 and 80.10 respectively; 4360m。 Continuously observe the mass concentration of black carbon in the atmosphere. The measuring instrument is ae31 (aethalometer), and its observation period is from 12:00:00 on July 13, 2019 to 21:35:00 on July 17, 2020. The time resolution is 5 minutes. There is data loss due to instrument failure. The data file includes instrument information, flow parameter setting (LPM) and specific observed concentration. Supported project: the second comprehensive scientific investigation and Research on the Qinghai Tibet Plateau 2019QZKK0602.
ZHU Chongshu, HU Tafeng, WU Feng, WANG Qiyuan, ZHANG Ningning, DAI Wenting
The data set contains the scattering and absorption coefficients of PM2.5 (particles with particle size less than 2.5 μ m) in the atmosphere of Shiquanhe national reference climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m) in Ali Region. The measurement instrument is photoacoustic extinctiomer (pax), the observation period is from July 13, 2019 to August 2, 2019, and the time resolution is 1 minute. The data set can be used to study the scattering and absorption characteristics of PM2.5 over the Tibetan Plateau.
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
The data set contains the scattering coefficients of PM2.5 (particles less than 2.5 μ m) at 450nm, 550nm and 700nm at Shiquanhe national climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m). The measuring instrument is tsi-3563 integral turbidimeter, the observation period is from July 8, 2019 to August 2, 2019, and the time resolution is 10 seconds. It can be used to study the dependence of PM2.5 scattering coefficient on the wavelength of incident light, which can reflect the particle size distribution of PM2.5.
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
The data set contains the off-line sampling data of medium flow aerosols from Shiquanhe national climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m) in Ali Region. The measuring instrument is Laoying 2030 medium flow sampler. The quartz filter membrane samples of PM2.5, PM10 and TSP with a diameter of 90 mm are collected. The samples will be used for chemical components such as elemental carbon, organic carbon, water-soluble ions and metal elements analysis. The sampling period is from July 7, 2019 to August 2, 2019, starting at 09:00 every day, with a total of 81 samples for 23 hours each time. The data is stored in Excel file.
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
The data set contains the number concentration and size distribution spectrum of particles in the atmosphere of Shiquanhe national climate station (32 ° 30'n, 80 ° 05'e, elevation 4278.6 m) in Ali Region. The instrument is tsi-3321 aerodynamic particle size spectrometer (APS), with 52 particle size channels. The observation period is from July 7, 2019 to August 2, 2019, and the time resolution is 5 minutes. The size distribution spectra of aerosol volume concentration and mass concentration can be obtained by using the data, aerosol spherical hypothesis and aerosol density, and then the characteristics of aerosol particle size distribution in the northwest of Qinghai Tibet Plateau can be studied.
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
There are two types of aerosol data in the Tibetan Plateau. Aerosol type data products are the results of aerosol type data fusion by using Meera 2 assimilation data and active satellite CALIPSO products through a series of data preprocessing, quality control, statistical analysis and comparative analysis. The key of the algorithm is to judge the CALIPSO aerosol type. According to CALIPSO aerosol types and quality control, and referring to merra 2 aerosol types, the final aerosol type data (12 kinds) and quality control results were obtained. Considering the vertical and spatial distribution of aerosols, it has high spatial resolution (0.625 ° × 0.5 °) and temporal resolution (month). Aerosol optical depth (AOD) is a visible band remote sensing inversion method developed by ourselves, combined with merra-2 model data and NASA's official product mod04. The data coverage time is from 2000 to 2019, with daily temporal resolution and spatial resolution of 0.1 degree. The retrieval method mainly uses the self-developed APRs algorithm to retrieve the aerosol optical depth over the ice and snow. The algorithm takes into account the BRDF characteristics of the ice and snow surface, and is suitable for the inversion of aerosol optical thickness on the ice and snow. The results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the polar AOD.
GUANG Jie, ZHAO Chuanfeng
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn