Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
Record the original collection process of glacier, runoff, soil and air microbial samples. 1) Collection of ice and snow microbial samples: wear clean gloves during collection and collect ice and snow into clean self sealing bags. 2) Collection of ice dust microbial samples: insert the hose into the bottom of the ice and snow cave, suck the sediment and melt water into the sampling bottle with a syringe, store them at low temperature and bring them back to the laboratory. Both the sediment and melt water on the top of the ice dust cave are used to extract environmental DNA. 3) Runoff includes ice runoff and glacier front runoff, and the runoff melt water is directly collected into the sampling bottle or water collection bag. 4) Collection of soil in front of Glacier: collect soil samples with shovel, put the soil into clean whirl Pak sampling bag after passing 2mm soil sieve, and then store it at low temperature for subsequent soil DNA extraction. 5) Air membrane sample collection: place the designed sampling device at the sampling point. The lower part of the device is a battery (continuous operation for 48h), and the upper part contains two filter membranes to collect air microorganisms for DNA extraction. 6) for real-time monitoring of physical and chemical properties in Glacier runoff and melt water, use YSI multi parameter water quality instrument to directly put it into the sample to be measured to obtain temperature, do, chlorophyll concentration, etc.
LIU Yongqin
The data includes: zooplankton species list; zooplankton density; microscopy; high-throughput sequencing; complete data; constructing an original data set for lakes on the Qinghai-Tibet Plateau. Zooplankton is an indispensable link in lake water ecological investigation, and it is a link between the system The location of the food web is an important carrier for the material circulation and energy flow of the food web. The systematic investigation and study of the composition and biodiversity of the zooplankton in the lakes on the Qinghai-Tibet Plateau is particularly important for understanding the stability and resilience of the lake ecosystem on the Qinghai-Tibet Plateau. In addition, Zooplankton are very sensitive to environmental changes, and changes in their structure and functional groups can indicate the intensity and magnitude of environmental pressure.
LI Yun
In order to describe the diseases of the main domesticated animals in the Qinghai Tibet Plateau and its surrounding areas, investigate the epidemic situation of the main domestic animals in the Qinghai Tibet Plateau, collect the genetic samples of the resistant and susceptible individuals and the intestinal microbial samples of the main epidemic diseases of the main domestic animals. The data set includes 48 samples of brown cattle in Yili area of Xinjiang, 39 samples of Haidong Mongolian sheep in Qinghai, 32 samples of Qinghai horse, 20 samples of Shangri La yellow cattle in Yunnan and 20 samples of goat. All the samples were fresh feces, and the results of 16S sequencing were obtained after DNA extraction. All the data are original data without any analysis. The purpose of testing these samples is to compare the differences of intestinal microbial species and quantity among different domestic animals in the pan third polar region.
DUAN Ziyuan
(1) This data set is the carbon flux data set of Shenzha alpine wetland from 2016 to 2019, including air temperature, soil temperature, precipitation, ecosystem productivity and other parameters. (2) The data set is based on the field measured data of vorticity, and adopts the internationally recognized standard processing method of vorticity related data. The basic process includes: outlier elimination coordinate rotation WPL correction storage item calculation precipitation synchronization data elimination threshold elimination outlier elimination U * correction missing data interpolation flux decomposition and statistics. This data set also contains the model simulation data calibrated based on the vorticity correlation data set. (3) the data set has been under data quality control, and the data missing rate is 37.3%, and the missing data has been supplemented by interpolation. (4) The data set has scientific value for understanding carbon sink function of alpine wetland, and can also be used for correction and verification of mechanism model.
Da Wei
This dataset is the spatial distribution map of the marshes in the source region of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
WANG Guangjun
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
The data is tailored from "China's 1:1 million wetland data". "China's 1:1 million wetland data" mainly reflects the national wetland information in the 2000's, which is expressed by the decimal system of geographical coordinates. The main contents include: types of wetland, water supply types of wetland, soil types, main vegetation types, geographical areas, etc. The information classification and coding standard of China sustainable development information sharing system has been implemented. Data source of the database: 1:20 swamp map (internal version), 1:500000 swamp map of Qinghai Tibet Plateau (internal version), 1:1 million swamp survey data and 1:4 million swamp map of China; processing steps: data source selection, preprocessing, digitization and coding of swamp wetland elements, data editing and processing, establishment of topological relationship, edge connection processing, projection conversion, place name and other attribute databases Link and get property data.
ZHANG Shuqing
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
The data was compiled from "China's 1:100 million wetlands data" to get a figure of 1 million wetlands in gansu province. "China 1:100,000 wetland data" mainly reflects the information of marshes and wetlands throughout the country in the 2000s, and is represented by geographical coordinates in decimal scale. The main contents include: types of marshes and wetlands, types of water supply, types of soil, types of main vegetation, and geographical regions.The information classification and coding standard of China sustainable development information sharing system was implemented.Data source of this database: 1:20 swamp map (internal version), 1:500 000 swamp map (internal version) of qinghai-tibet plateau, 1:100 000 swamp survey data and 1:400 000 swamp map of China;The processing steps are as follows: data source selection, preprocessing, marshland element digitization and coding, data editing and processing, establishment of topological relationship, edge-to-edge processing, projection transformation, connection with attribute database such as geographical name and acquisition of attribute data.
ZHANG Shuqing
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn