The Wuyu Basin is bounded by the Gangdese Mountains to the north and the Yarlung Tsangpo River to the south, and is a representative basin to study the Cenozoic tectonism of the southern Tibet. The sedimentary strata in the Wuyu Basin include the Paleocene-Eocene Linzizong Group volcanics and the Oligocene Rigongla Formation (Fm.) volcanics, the Miocene lacustrine sediments of the Mangxiang Fm. and Laiqing Fm. volcanics, the late Miocene-Pliocene Wuyu Fm., and the Pleistocene Dazi Fm. Five sandstone samples from the Mangxiang Fm., Wuyu Fm. and Dazi Fm. and one modern Wuyu reiver sand sample were collected for detrital zircon U-Pb dating using the LA-ICP-MS method. Detrital zircon U-Pb ages in the Mangxiang Fm. show a large cluster at 45-80 Ma; those in the Wuyu Fm. show a large cluster at 8-15 Ma and a subsidiary cluster at 45-70 Ma; those in the Dazi Fm. show three large clusters at 45-65 Ma, 105-150 Ma and 167-238 Ma; and those in modern Wuyu river show a large cluster at 8-15 Ma and a subsidiary cluster at 45-65 Ma (Figure 1). Late Cretaceous-early Eocene zircons in all samples are consistent with the most prominent stage of magmatism of the Gangdese Mountains; the 8-15 Ma zircons in the Wuyu Fm. and modern Wuyu river are consistent with the magmatism of the Laiqing Fm.; and the Triassic-Jurassic zircons in the Dazi Fm. are consistent with the magmatism of the central Lhasa terrane. The results of detrital zircon U-Pb ages and sedimentary facies analyses in the Wuyu Basin indicate that the southern Tibetan Plateau suffered multi-stage tectonism-magmatism since the India-Asia collision: (1) Paleogene Linzizong Group-Rigongla Fm. volcanics; (2) tectonism-magmatism at ~15 Ma ended the lacustrine sediments of the Mangxiang Fm. and resulted in volcanism of the Laiqing Fm.; (3) tectonism at ~8 Ma resulted in the volcanic rocks of the Laiqing Fm. becoming one of the main provenances for the overlying Wuyu Fm.; (4) the Wuyu Basin formed braided river and received sediments from the central Lhasa terrane to its north at ~2.5 Ma. The geomorphic pattern of the southern Tibet has gradually formed since the Quaternary.
MENG Qingquan MENG Qingquan
The dataset includs borehole core lithology, altitude survey, soil thickness and slop measurement, hydrogeological survey, and hydrogeophysical survey in the Maqu catchment of the Yellow River source region in the Tibetan Plateau. The borehole lithology data is from the 2017 drilled borehole ITC_ Maqu_ 1; altitude survey was carried out using RTK in 2019; Soil thickness and slope data were collected by auger and inclinometer in 2018 and 2019; hydrogeological survey includes groundwater table depth measurements in 2018 and 2019, and aquifer test data obtained in 2019; hydrogeological survey includes Magnetic Resonance Sounding (MRS) , Electrical Resistivity Tomography (ERT) , Transient Electromagnetic (TEM) , and magnetic susceptibility measurements. MRS and ERT surveys were conducted in 2018. TEM and magnetic susceptibility measurements were carried out in 2019.
LI Mengna, ZENG Yijian, Maciek W. LUBCZYNSKI, BOB Su, QIAN Hui
These datasets fill the data gap between GRACE and GRACE-FO, they contain CSR RL06 Mascon and JPL RL06 Mascon. They take China as the study area, and the dataset includes "Decimal_time”, "lat”, "lon”, "time”, "time_bounds”, "TWSA_REC" and "Uncertainty" 7 parameters in total. Among them, "Decimal_time” corresponds to decimal time. There are 191 months from April 2002 to December 2019 (163 months for GRACE data, 17 months for GRACE-FO data, and 11 months for the gap between GRACE and GRACE-FO. We have not filled the missing data of individual months between GRACE or GRACE-FO data). "lat" corresponds to the latitude range of the data; "lon" corresponds to the longitude range of the data; "time" corresponds to the cumulative day of the data from January 1, 2002. And "time_bounds" corresponding to the cumulative day at the start date and end date of each month. “TWSA_REC" represents the monthly terrestrial water storage anomalies from April 2002 to December 2019 in China; "Uncertainty" is the uncertainty between the data and CSR RL06 Mascon products. We use GRACE satellite data from CSR GRACE/GRACE-FO RL06 Mascon solutions (version 02), China Gauge-based Daily Precipitation Analysis (CGDPA, version 1.0) data, and CN05.1 temperature dataset. The precipitation reconstruction model was established, and the seasonal and trend terms of CSR RL06 Mascon products were considered to obtain the dataset of terrestrial water storage anomalies in China. The data quality is good as a whole, and the uncertainty of most regions in China is within 5cm. This dataset complements the nearly one-year data gap between GRACE and GRACE-FO satellites, and provides a full time series for long-term land water storage change analysis in China. As the CSR RL06 Mascon product, the average value between 2004.0000 and 2009.999 is deducted from this dataset. Therefore, the 164-174 months (i.e., July 2017 to May 2018) of this dataset can be directly extracted as the estimation of terrestrial water storage anomalies during the gap period. The reconstruction method for the gap of JPL RL06 Mascon is consistent with that of CSR RL06 Mascon.
ZHONG Yulong, FENG Wei, ZHONG Min, MING Zutao
The data set of hydrogeological elements in the typical frozen soil area of Qilian Mountain mainly includes groundwater type, water richness (single water inflow or single spring flow), main rivers and tributaries, spring water (falling springs, spring groups, large springs, Mineral spring distribution), borehole (pressure water borehole, submerged borehole, gravity flow borehole distribution), fault zone (compressive fracture, tensile fracture), angle unconformity boundary, parallel unconformity boundary, west branch of upper Heihe River The boundary of the watershed, the seasonal frozen soil area and the permafrost distinguish the boundary, the distribution of modern glaciers and swamps. This data set of hydrogeological elements can provide background information for the hydrological ecological process and hydrogeological environment in cold regions. This data comes from the vectorization of four 1: 200,000 hydrogeological maps (Qilian, Yenigou, Qilian, and Sunan) and reintegrates the groundwater types. With higher resolution, the data can provide background information for the research on the evolution of water and soil resources and environmental changes in the source area of the Pan-Third Pole River.
SUN Ziyong
This data set comprises pictures of geological sections and landscape of Nima Basin and Lunpola Basin in the north of Tibetan Plateau which produced on achievement of geological survey in these years. The process of section pictures drawing comprises: measurement of different stratas by hand; identify and description of stratas by experienced geological researcher; picture production with software, based on information collected above. Landscape pictures were drew from satellite maps as base map, then added texts with software. All the pictures are clear, detailed and comprehensive. They are very critical for research on geology, geomorphology of the important localities in the north of Tibetan Plateau, such as Nima Basin and Lunpola Basin, and necessary for paleo-altimetry and uplift of Tibetan Plateau.
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn