1) In mountainous areas, due to the complex topographic and geological background conditions, landslides are very easy to occur triggered by external factors such as rainfall, snow melting, earthquake and human engineering activities, resulting in the loss of life and property and the destruction of the natural environment. In order to meet the safety of project site construction, the rationality of land use planning and the urgent needs of disaster mitigation, it is necessary to carry out regional landslide sensitivity evaluation. When many different evaluation results are obtained by using a variety of different methods, how to effectively combine these results to obtain the optimal prediction is a technical problem that is still not difficult to solve at present. It is still very lack in determining the optimal strategy and operation execution of the optimal method for landslide sensitivity evaluation in a certain area. 2) Using the traditional classical multivariate classification technology, through the evaluation of model results and error quantification, the optimal evaluation model is combined to quickly realize the high-quality evaluation of regional landslide sensitivity. The source code is written based on the R language software platform. The user needs to prepare a local folder separately to read and store the software operation results. The user needs to remember the folder storage path and make corresponding settings in the software source code. 3) The source code designs two different modes to display the operation results of the model. The analysis results are output in the standard format of text and graphic format and the geospatial mode that needs spatial data and is displayed in the standard geographic format. 4) it is suitable for all people interested in landslide risk assessment. The software can be used efficiently by experienced researchers in Colleges and universities, and can also be used by government personnel and public welfare organizations in the field of land and environmental planning and management to obtain landslide sensitivity classification results conveniently, quickly, correctly and reliably. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development
YANG Zhongkang
This data set includes the social, economic, resource and other relevant index data of Gansu, Qinghai, Sichuan, Tibet, Xinjiang and Yunnan in the Qinghai Tibet Plateau from 2000 to 2015. The data are derived from Gansu statistical yearbook, Qinghai statistical yearbook, Sichuan statistical yearbook, Xizang statistical yearbook, Xinjiang statistical yearbook, Yunnan statistical Yearbook China county (city) socio economic statistical yearbook And China economic network, guotai'an, etc. The statistical scale is county-level unit scale, including 26 county-level units such as Yumen City, Aksai Kazak Autonomous Region and Subei Mongolian Autonomous County in Gansu Province, 41 county-level units such as Delingha City, Ulan county and Tianjun County in Qinghai Province, 46 counties such as Shiqu County, Ruoergai County and ABA County in Sichuan Province, and 78 counties such as Ritu County, Gaize county and bango County in Tibet, 14 counties including Wuqia County, aktao county and Shache County in Xinjiang Province, and 9 counties including Deqin County, Zhongdian county and Fugong County in Yunnan Province; Variables include County GDP, added value of primary industry, added value of secondary industry, added value of tertiary industry, total industrial output value of Industrial Enterprises above Designated Size, total retail sales of social consumer goods, balance of residents' savings deposits, grain output, total sown area of crops, number of students in ordinary middle schools and land area. The data set can be used to evaluate the social, economic and resource status of the Qinghai Tibet Plateau.
CHEN Yizhong
The data set analyzes the spatial and temporal distribution, impact and loss of typical global flood disasters from 2018 to 2019. In 2018, there were 109 flood disasters in the world, with a death toll of 1995. The total number of people affected was 12.62 million. The direct economic loss was about 4.5 billion US dollars, which was at a low level in the past 30 years. The number of global flood incidents in 2018 was higher in the first half of the year than in the second half of the year, and the frequency of occurrence was higher from May to July. Therefore, based on three typical disaster events such as the hurricane flood in Florence in the United States in 2018, the flooding of the Niger River in Nigeria in 2018, and the Shouguang flood in Shandong Province in 2018, the disaster background, hazard factors, and disaster situation were analyzed. .
JIANG Zijie, JIANG Weiguo, WU Jianjun, ZHOU Hongmin
The data set of 1:100,000 settlements in the Arctic includes all settlements in the North Pole (Arctic_Resident), capital settlements (Arctic_Capitals), Cities_up_to_75K settlements and other vector spatial data and related attribute data: urban name (ENG_NAME), CITY_POP and other properties. The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,It's most comprehensive, current and seamless geographic digital data for the whole earth. The world map coordinate system is latitude and longitude, WGS84 datum surface,Arctic specific projection parameters(North_Pole_Stereographic).
ADC WorldMap
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn