This dataset includes the schematic diagrams and lithologic histograms of the measured sections of typical unconsolidated sediments in Shigatse, Yarlung Tsangpo River Basin, as well as the statistical table of measured sections. The source data comes from a two-month field measurement in Shigatse, Tibet. 16 sections of unconsolidated sediments were measured, and 128 samples were collected, including 89 cosmic nuclide samples and 39 optically stimulated luminescence samples. 16 schematic diagrams and 38 lithologic histograms were shown. The dataset primarily shows the genetic types of typical unconsolidated sediments in the Shigatse area, such as alluvium, eluvium, diluvium, colluvium, and moraine deposits. The exposed range of measured sediment thickness is about 1.6–70 m, the average thickness is about 29 m, and the horizontal distribution is 41–9059 m. The dataset demonstrates the discrete, porous, sandy and weakly cemented structural characteristics of the unconsolidated sediments with high gravel content (80%–95%), and the main gravel diameter distribution is 0.05–0.1m; sorting and roundness of alluvium are good, while the colluvial materials are poor. Fining-upward trends are commonly seen in most sections, and parallel and tabular cross-bedding are occasionally developed. Untangling the sedimentary characteristics of unconsolidated sediments in the Yarlung Tsangpo River Basin is vital to reveal the storage of fluvial solid matter across the basin, and provide important instructions for disaster warning and prevention and control of related features caused by sliding, unloading, and collapse of the ground surface. It is also of great scientific value to reveal the source-sink process and evolution of fluvial and alluvial systems in the Tibet Plateau and its surrounding basins.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo
Focusing on the objective of estimating the total amount of unconsolidated sediments in the Yarlung Tsangpo River Basin (YTRB), we marked a series of Quaternary sections of unconsolidated sediments in the whole basin to measure their thickness. The dataset presents a collection of field photos of unconsolidated sediments obtained in the scientific expedition in YTRB in 2020. Specifically, this dataset comprises of 16 composite first–class sub basins, from upstream to downstream, including Dangque–Laiwu Tsangpo, Resu–Lierong Tsangpo, Chaiqu–Menqu, Xiongqu–Wengbuqu, Jiada Tsangpo, Pengji Tsangpo–Sakya Chongqu, Duoxiong Tsangpo, Shabu–Danapu, Nianchu River, Xiangqu–Wuyuma, Manqu, Nimuma–Lhasa River, Gonggapu–Luoburongqu, Niyang River, Yigong Tsangpo–Palong Tsangpo, and Xiangjiang River Basin. A total of 584 sites of unconsolidated sediments were marked. The atlas displays different types of unconsolidated sediments, such as alluvium, eluvium, diluvium, colluvium, eolian, lacustrine and moraine deposits, showing their spatial distribution in hillsides, foothills, floodplains, terraces, alluvial–diluvial fans and glacier fronts. With a scale of 1m benchmarking, it shows the significant difference in distribution of thickness. Generally, the thickness of the eluvium on the upper part of the hillside is about 0.3–2.5m, and the thickness of the alluvium is difficult to bottom out. The thickness of diluvium in the gentle area of the piedmont with steep slope is usually between 5 and 10 m, while the thickness of the deposit at the piedmont gully mouth is related to the scale of the pluvial fan, which can reach tens of meters thick and only 3 to 4 meters thin. From the upstream to the downstream, the thickness of alluvium varies greatly. The bedrock in the canyon area is exposed, and the thickness is almost 0. However, the thickness of alluvium in the upstream river valley is large and difficult to see the bottom interface; The maximum thickness of measured moraine deposits can reach more than 20 m. Aeolian deposits are common in the middle and upper reaches, with a wide range of thickness, ranging from a few meters to more than 20 meters. The dataset provides a wide variety of in–suit photos and measurements of unconsolidated sediments covering the whole basin, showing their characteristics of spatial distribution and genetic types, which lays a material foundation and prior knowledge for further detailed characterization and investigation of unconsolidated sediments. This work presents data for estimating the total accumulation of solid debris deposited in the YTRB, and provides a basis for assessing the risk of natural disasters related to unconsolidated sediments and formulating scientific preventive measures.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, HU Taiyu
The considerable amount of solid clastic material in the Yarlung Tsangpo River Basin (YTRB)) is one of the important components in recording the uplift and denudation history of the Tibet Plateau. Different types of unconsolidated sediments directly reflect the differential transport of solid clastic material. Revealing its spatial distribution and total accumulation plays an important value in the uplift and denudation process of the Tibet Plateau. The dataset includes three subsets: the type and spatial distribution of unconsolidated sediments in theYTRB, the thickness spatial distribution, and the quantification of total deposition. Taking remote sensing interpretation and geological mapping as the main technical method, the classification and spatial distribution characteristics of unconsolidated sediments in the whole YTRB (16 composite sub-basins) were comprehensively clarified for the first time. Based on the field measurement of sediment thickness, the total accumulation was preliminarily estimated. A massive amount of sediment is an important material source of landslide, debris flow and flood disasters in the basin. Finding out its spatial distribution and total amount accumulation not only has theoretical significance for revealing the key information recorded in the process of sediment source to sink, such as surface environmental change, regional tectonic movement, climate change and biogeochemical cycle, but also has important application value for plateau ecological environment monitoring and protection, flooding disaster warning and prevention, major basic engineering construction, and soil and water conservation.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo, HU Taiyu, ZHANG Chenjin
The Cenozoic strata developed within and around the Tibetan Plateau, contain fruitful information on the tectonic evolution, paleoenvironment and paleoclimate changes. It's very significant on revealing the history of the uplift and deformation of the Tibetan Plateau and its relevant effects on the regional and even global environment and climate. This data set contains several well developed sections, which have been identified by the systematic geological survey. Depending on the tools (e.g. GPS, geological compass) in the fieldwork, we have finished the geological measurements and descriptions of these sections as well as the relevant geological maps. It includes a 90-m loess deposit of the Duikang section in the Linxia basin, several fluvial and lacustrine deposits (such as the 1890-m Dayu section in the Lunpola basin, the 300-m Shuanghe section in the Jianchuan basin, the 252-m Caijiachong section in the Qujing basin) and a 932-m saline lacustrine deposit with gypsolyte of the Jiangcheng section in the Simao basin. This data set provides a solid geological foundation for the following researches on stratigraphic chronology, tectonic evolution, paleoenvironment and paleoclimate, and so forth.
FANG Xiaomin , FANG Xiaomin, YAN Maodu, ZHANG Weilin, ZHANG Dawen
The data are the detrital zircon ages of the late Cretaceous early Cenozoic strata in Sichuan Basin, Xichang Basin, Huili basin and Chuxiong Basin on the eastern margin of the Qinghai Tibet Plateau; All detrital zircon samples collected in this study are sandstone. The crushing and zircon selection of samples were completed in Langfang Chengxin Geological Service Co., Ltd; Zircon U-Pb dating was done at the State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). At least 200 zircon grains were randomly selected to adhere to double-sided adhesive, and were poured into the laser sample target with epoxy resin. All samples were ablated by using a laser beam with a diameter of 28μm, a frequency of 10 Hz and laser energy density of 4.0J/cm 2 .
ZHANG Huiping
Dating data of debris flow and dammed lake sediments in complex mountainous areas from 2019 to 2021. The data collection sites are complex mountainous areas prone to debris flow in the eastern and southern edges of the Qinghai Tibet Plateau. The experimental analysis is mainly completed in the salt lake chemical analysis and testing center of Qinghai Salt Lake Research Institute of Chinese Academy of Sciences and the analysis and testing center of Chengdu Mountain Institute of Chinese Academy of Sciences. The instruments used include RIS ø TL / OSL – Da – 20 automatic luminescence instrument, etc. The age data set of debris flow sediments in typical complex mountainous areas is established, the formation age of debris flow sediments in complex mountainous areas is quantitatively studied, and the ancient debris flow disaster activity history in complex mountainous areas is determined.
HU Guisheng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn