This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2020. There were BLS900, BLS450 and RR-RSS460 at Sidaoqiao Superstation. The north towers were set up with these instruments’ receivers and the south towers were transmitters. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900&BLS450:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14). (2) The data were rejected when the demodulation signal was small (BLS900&BLS450:Average X Intensity<1000;RR-RSS460:Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2020.02.13-2020.02.14;2020.05.18-2020.15.19。 Several instructions were included with the released data. (1) The las data are firstly from BLS900, followed by BLS450, and finally the final missing data was marked with-6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei, ZHANG Yang
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 6 in 2020. There were two types of LASs at Daman Superstation: BLS900 and RR-RSS460, produced by Germany. The north tower was set up with the BLS900 receiver and the RR-RSS460 transmitter, and the south tower was equipped with the BLS900 transmitter and the RR-RSS460 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 24.1 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS900 and RR-RSS460. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14). (2) The data were rejected when the demodulation signal was small (BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2020.06.21-2020.06.23;2020.09.21-2020.10.14. Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the RR-RSS460 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei, ZHANG Yang
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Arou Superstation in the Heihe integrated observatory network from January 18 to December 31 in 2020. There were two types of LASs at Arou Superstation: BLS900 and RR-RSS460, produced by Germany and China, respectively. The north tower was set up with the RR-RSS460 receiver and the BLS900 transmitter, and the south tower was equipped with the RR-RSS460 transmitter and the BLS900 receiver. The site (north: 100.471° E, 38.057° N; south: 100.457° E, 38.038° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 13.0 m, and the path length was 2390 m. The data were sampled 1 minute at both BLS900 and RR-RSS460. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900: Cn2>7.25E-14, RR-RSS460: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; RR-RSS460: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is:2020.09.25-2020.10.16. Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the RR-RSS460 instrument. The missing data were denoted by -6999. Due to the problems of storing and wireless transmission. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei, REN Zhiguo
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2018. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Daman Superstation: BLS900 and RR-RSS460, produced by Germany. The north tower was set up with the BLS900 receiver and the RR-RSS460 transmitter, and the south tower was equipped with the BLS900 transmitter and the RR-RSS460 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 24.1 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS900 and RR-RSS460. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14). (2) The data were rejected when the demodulation signal was small (BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2019.01.22-2019.01.24; 2019.03.01-2019.04.26; 2019.10.28-2019.11.14; 2019.11.29-2019.12.20。 Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the RR-RSS460 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei, ZHANG Yang
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Arou Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2019. There were two types of LASs at Arou Superstation: BLS900 and RR-RSS460, produced by Germany and China, respectively. The north tower was set up with the RR-RSS460 receiver and the BLS900 transmitter, and the south tower was equipped with the RR-RSS460 transmitter and the BLS900 receiver. The site (north: 100.471° E, 38.057° N; south: 100.457° E, 38.038° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 13.0 m, and the path length was 2390 m. The data were sampled 1 minute at both BLS900 and RR-RSS460. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900: Cn2>7.25E-14, RR-RSS460: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; RR-RSS460: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2019.04.20-2019.04.30;2019.05.07-2019.05.13;2019.06.06-2019.06.10;2019.09.03-2019.09.05。 Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the RR-RSS460 instrument. The missing data were denoted by -6999. Due to the problems of storing and wireless transmission. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei, REN Zhiguo
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2019. There were BLS900, BLS450 and RR-RSS460 at Sidaoqiao Superstation. The north towers were set up with these instruments’ receivers and the south towers were transmitters. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900&BLS450:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14). (2) The data were rejected when the demodulation signal was small (BLS900&BLS450:Average X Intensity<1000;RR-RSS460:Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2019.04.14-2019.04.25;2019.11.02-2019.11.12。 Several instructions were included with the released data. (1) The las data are firstly from BLS900, followed by BLS450, and finally the final missing data was marked with-6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei, ZHANG Yang
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn