This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
WANG Lei
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2018. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Jan. 23 to Jan. 24 because of collector failure; the data during Mar. 17 and May 24 were wrong because of the tower body tilt; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
The data set contains the meteorological element observation data of the upper reaches of the heihe hydrological meteorological observation network of daxun station on January 1, 2015 and December 31, 2017.The site is located in the western side of qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406°E, 38.8399°N and 3739m above sea level.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plate (3 pieces) is buried in the underground 6cm successively and is 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the meteorological element observation data of jingyangling station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2017.The site is located in pass, jingyangling mountain, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160E, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: percent). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
Shergyla Mountain meteorological data, Record the surface near Linzhi(1.2-1.5m) conventional meteorological observation.The dataset records the meteorological data at the eastern slope of Shergyla Mountain from 2005 to 2016, and North-facing slope from 2005 to 2012.Including daily average data of temperature, relative humidity, precipitation. Data collected near the eastern slope timberline of Shergyla Mountain, Latitude:29°39′25.2″N; Longitude:94°42′25.62″E; Altitude:4390m, and collected near the north-facing slope of Shergyla Mountain, Latitude:29°35′50.9″N; Longitude:94°36′42.7″E; Altitude:4390m. Collector: Campbell Co CR1000. Collection time interval:30min. Digital automatic data collection, daily average value of artificial calculation. It includes the following basic meteorological parameters: North-facing slope data: Wind speed,Unit m/s Temperature,Unit ℃ Relative Humidity,Unit % Atmospheric pressure,Unit hPa Global radiation,Unit w/m2 Soil heat flux,Unit w/m2 Soil temperature,Unit ℃ Soil moisture,Unit % Precipitation,Unit mm Thickness of snow, Unit cm Ecology station data: Temperature,Unit ℃ Relative Humidity,Unit % Atmospheric pressure,Unit hPa Wind speed,Unit m/s Precipitation,Unit mm Snow Depth,Unit cm Radiation,Unit w/m2 Soil moisture content,Unit % Soil heat flux,Unit w/m2
Luo Lun
The data set collects the long-term monitoring data on atmosphere, hydrology and soil from the Integrated Observation and Research Station of Multisphere in Namco, the Integrated Observation and Research Station of Atmosphere and Environment in Mt. Qomolangma, and the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data have three resolutions, which include 0.1 seconds, 10 minutes, 30 minutes, and 24 hours. The temperature, humidity and pressure sensors used in the field atmospheric boundary layer tower (PBL) were provided by Vaisala of Finland. The wind speed and direction sensor was provided by MetOne of the United States. The radiation sensor was provided by APPLEY of the United States and EKO of Japan. Gas analysis instrument was provided by Licor of the United States, and the soil moisture content, ultrasonic anemometer and data collector were provided by CAMPBELL of the United States. The observing system is maintained by professionals on a regular basis (2-3 times a year), the sensors are calibrated and replaced, and the collected data are downloaded and reorganized to meet the meteorological observation specifications of the National Weather Service and the World Meteorological Organization (WMO). The data set was processed by forming a time continuous sequence after the raw data were quality-controlled, and the quality control included eliminating the systematic error caused by missing data and sensor failure.
MA Yaoming
These are the meteorological, soil, vegetation and other data observed by the Gongga Mountain Forest Ecosystem Test Station on the eastern margin of the Tibetan plateau, primarily from 2005 to 2008. Meteorological data: temperature, air pressure, relative humidity, dew point temperature, water pressure, ground temperature, soil temperature (5 cm, 10 cm, 20 cm, and 40 cm), 10-minute average wind, 10-minute maximum wind speed, precipitation, total radiation, net radiation. Tree layer biological observation data: diameter at breast height, tree height, life form Shrub layer biological observation data: tree number, height, coverage, life form, aboveground biomass, underground biomass Herb layer biological observation data: tree (strain) number, average height, coverage, life type, aboveground biomass, underground biomass Leaf area index: tree layer leaf area index, shrub layer leaf area index, grass layer leaf area index Soil organic matter and nutrients: soil organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, available nitrogen (alkali-hydrolysable nitrogen), available phosphorus, available potassium, slowly available potassium, PH value in aqueous solution Soil water content: depth, water content
WANG Xiaodan
This data set includes the biomass and photosynthesis observational data of the highland spring barley experimental plot at the Lhasa Farm Experimental Station and the meteorological data observationally obtained at the Damxung Grass Experimental Station. The time range is 2006-2009. Biomass observation method: The sampling area of each sample is 25 cm*25 cm. Photosynthetic data observation: The instrument is a LiCor-6400. The biomass data are manually entered according to the record book. The photosynthetic data are automatically recorded by the instrument. The average wind speed, prevailing wind direction, temperature, atmospheric pressure and relative humidity in the daily values of meteorological data are averaged over half-hour data. The precipitation and total radiation data are automatically recorded by the observation system. The observation process of biomass data is in strict accordance with the agronomic method, and it can be applied to the estimation of agricultural productivity. In the process of photosynthetic data observation, the operation of the instrument and the selection of the observation object are strictly in accordance with professional requirements and can be used in photosynthetic parameter simulations estimating plant leaf and productivity. The Tibetan Plateau farmland ecosystem observation data includes: 1) aboveground biomass; 2) CO2 response photosynthetic data; 3) light-response photosynthetic data; and 4) daily meteorological data in Damxung Monitoring Point. Data collection locations: Lhasa Agricultural Ecology Experimental Station, Chinese Academy of Sciences, Longitude: 91°20’, Latitude: 29°41’, Altitude: 3688 m and Damxung Alpine Meadow Carbon Flux Observation Station, Longitude: 91°05′, Latitude: 30°25′, Altitude: 4333 m.
ZHANG Xianzhou
This is the meteorological observation data of Selincuo Lake Camp. It includes the radiosonde data, turbulent flux, radiation observation data, general meteorologrical elements near the surface layer and others. The radiosonde data is observed separately at 14:00 and 18:00 July 2, at 8:00, 12:00, 16:00 and 20:00 July 3, at 8:00, 12:00, 16:00, 20:00, and 23:00 July 4, at 6:00 July 5, 2017. The observation time of turbulent flux and radiation observation data is from 17:30 June 29 to 10:00 July 6, 2017. The observation time of general meteorologrical elements near the surface layer is from 18:30 June 29 to 10:10 July 6, 2017. The wind lidar observation time is from 2:24 June 30 to 3:49 July 6, 2017. The data is stored as an excel file.
HAN Yizhe, MA Weiqiang*
This data set mainly includes meteorological data and soil moisture data collected from 2005 to 2008 at the Sherjila Mountain Alpine Timberline Observation Site of the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set of alpine timberline observations in southeast Tibet includes 1) the meteorological data set and 2) the soil moisture data set. The meteorological data set includes wind speed, temperature (1, 3 m), relative humidity (1, 3 m), soil heat flux (-5, -20, -60 cm), soil temperature (-5, -20, -60 cm), air pressure, total radiation, net radiation, photosynthetically active radiation, infrared radiation (660, 730 nm), atmospheric longwave radiation, ground longwave radiation, surface temperature, precipitation, and snow thickness. The soil moisture data set includes vegetation type and soil water content (-5, -20, -60 cm). Instruments used for each variable: Temperature: Air temperature probe, produced in Taiwan, model TRH-S. Relative humidity: Model TRH-S, produced in Taiwan. Wind speed: Anemoscope, produced in Taiwan, model 03102. Barometric Pressure: Barometric pressure sensor, produced in Taiwan, model BP0611A. Atmospheric longwave radiation: Pyrgeometer, produced by the Kipp & Zonen Company of the Netherlands, model CG3. Ground longwave radiation: Pyrgeometer, produced by the Kipp & Zonen Company of the Netherlands, model CG3. Total radiation: Pyranometer, produced by the Kipp & Zonen Company of the Netherlands, model CM3. Net radiation: Net radiometer, produced by the Kipp & Zonen Company of the Netherlands, model NR-Lite. Photosynthetically active radiation: PAR-Sensor, produced by the Kipp & Zonen Company of the Netherlands, model MS-PAR. Infrared radiation: Infrared radiation sensor, produced by the Skye Company of the UK, model SKY110. Rainfall: Rain gauge, produced in Taiwan, model 7852 M. Snow thickness: Ultrasonic snow depth sensor, produced in the United States, model 260-700. Soil temperature: Soil temperature probe, produced by the Onset Company of the United States, model 12-Bit. Soil heat flux: Soil heat flux plate, produced by the Hukseflux Company of the Netherlands, model HFP01. Soil moisture content: Soil moisture sensor, produced by the Onset Company of the United States, model S-SMA-M003. The observations and data acquisition were carried out in strict accordance with the instrument operating specifications. Each instrument was rigorously validated and calibrated by the supplier before installation to ensure the accuracy of the observation data. Data with significant errors were removed when processing the data table.
LIU Xinsheng, LUO Tianxiang
The dataset of automatic meteorological observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Oct. 1, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the 15-20m high spruce and the surface was covered by 10cm deep moss. All the vegetation was in good condition. Observation items were the multilayer (2m and 10m) wind speed and direction, the air temperature and moisture, rain and snow gauges, snow depth, photosynthetically active radiation, four components of radiation from two layers (, 1.68m and 19.75 m), stem sap flow, the surface temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm),soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm) and soil heat flux (5cm & 15cm). As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the A'rou freeze/thaw observation station from Jul. 25, 2008 to Dec. 31, 2009, in Wawangtan pasture (E100°28′/N38°03′, 3032.8), Daban, A'rou. The experimental area, situated in the valley highland of south Babaohe river, an upper stream branch of Heihe river, with a flat and open terrain slightly sloping from southeast to southeast and hills and mountains stretching for 3km is ideal for a horizontal homogeneous underlying surface. Observation items included multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
HU Zeyong, MA Mingguo, Wang Weizhen, HUANG Guanghui, Zhang Zhihui, TAN Junlei
The dataset of automatic meteorological observations was obtained from Jun. 1, 2008 to Dec. 31, 2009 at the Huazhaizi desert station which is located in Anyangtan (E100°19'06.9″/N38°45'54.7″), south of Zhangye city, Gansu province,. The experimental area, situated in the middle stream of Heihe river, with a flat and open terrain and sparse vegetation cover is an ideal desert observing field. Observation items included the multi-layer (2m and 10m) wind speed and direction, the air temperature, precipitation, the four components of radiation, the surface infrared temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 160cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 160cm) and soil heat flux (5cm & 10cm). The raw data were level0 and the data after basic processes were level1; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate.. As for detailed information, please refer to “Meteorological and Hydrological Flux Data Guide".
LI Xin, XU Ziwei
The dataset of automatic meteorological observations was obtained at the Linze grassland station (E100 °04'/N39°15', 1394m) from Oct. 1, 2007 to Oct. 27, 2008. The landscape is dominated by wetland and saline land. Observation items were multilayer (2m, 4m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation, the surface temperature, the soil temperature (5cm, 10cm, 20cm and 40cm), and the multilayer soil temperature (2cm, 5cm and 10cm). The dataset was released at different levels: Level1 were transformed raw data and stored in .csv month by month; Level2 were processed data after correction and quality control. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
HU Zeyong, MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the Binggou cold region hydrometerological station (N38°04′/E100°13′), south of Qilian county, Qinghai province, from Sep. 25, 2007 to Dec. 31, 2009. The experimental area with paramo and riverbed gravel, situated in the upper stream valley of Heihe river, is ideal for the flat and open terrain and hills and mountains stretching outwards. The items were multilayer (2m and 10m) of the air temperature and air humidity, the wind speed, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), and soil heat flux (5cm and 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. The period from Sep. 25, 2007 to Mar. 12, 2008 was the pre-observing duration, during which hourly precipitation data (fragmented) and the soil temperature and soil moisture data were to be obtained. Stylized observations began from Mar. 12, 2008. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
WANG Jian, CHE Tao, MA Mingguo, Wang Weizhen, LI Hongyi, HAO Xiaohua, HUANG Guanghui, Zhang Zhihui, TAN Junlei
The dataset of automatic meteorological observations was obtained at the Dadongshu mountain snow observation station (E100°14′/N38°01′, 4101m) from Oct. 29, 2007 to Oct. 1, 2009. The experimental area with a flat and open terrain was slightly sloping from southeast to northwest. With alpine meadow and stones, and snow in autumn, winter and spring, the landscape was ideal. Observation items were multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, rain and snow gauges, snow depth, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
WANG Jian, CHE Tao, LI Hongyi, HAO Xiaohua
The dataset of automatic meteorological observations was obtained at the Yingke oasis station from Nov. 5, 2007 to Oct. 31, 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. Observation items were multilayer (2m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation; the surface infrared temperature; the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), the soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
This dataset contains data for comprehensive monitoring in the small watershed of Sumu Jaran in the Badain Jaran Desert from 2012 to 2013. The small watershed of Sumu Jaran is composed of two lakes, namely North Lake and South Lake of Sumu Jaran. The latitude and longitude range is: 39° 46' 18.24" to 39° 49' 17.25" north latitude, 102° 23' 40.53 " to 102° 26' 59.27" east longitude. The observation instruments are mainly arranged around the South Lake of Sumu Jaran, including scintillator (BLS450), automatic weather station (net radiation, rainfall, wind speed, wind direction, air humidity, pressure, E601 type evaporation dish), soil monitoring station (soil temperature, water content and tension pF-meter) and one groundwater monitoring hole. The data released this time are the monitoring results from September 2012 to December 2013. Post-monitoring data will be released in version 2.0. For the layout, coordinates, and type of the instrument, see the layout of the small watershed monitoring system.pdf, coordinates of the monitoring point.xls, and location and equipment of the monitoring point.tif.
HU Xiaonong, WANG Xusheng
This data set contains the observation data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. The observation items include: atmospheric wind temperature and humidity gradient observation (2cm, 4cm, 10cm, 20m and 30m), wind direction, air pressure, photosynthesis effective radiation, precipitation, radiation four components, surface temperature, multi-layer soil temperature (5cm, 10cm, 15cm, 20cm and 40cm), soil moisture (10cm, 20cm, 50cm, 100cm and 180cm) and soil heat flux (5cm, 10cm and 15cm). Please refer to the instruction document published with the data for specific header and other information.
Zhangye city meteorological bureau
The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.
ZHAO Chuanyan, MA Wenying
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn