The data include the Cenozoic plant fossils collected from Gansu, Qinghai and Yunnan by the Department of paleontology, School of Geological Sciences and mineral resources, Lanzhou University from 2019 to 2020. All the fossils were collected by the team members in the field and processed in the laboratory by conventional fossil restoration methods and cuticle experiment methods. The fossils are basically well preserved, some of which are horned The study of these plant fossils is helpful to understand the Cenozoic paleoenvironment, paleoclimate, paleogeographic changes and vegetation features of the eastern Qinghai Tibet Plateau.
YANG Tao
This dataset is derived from the paper: Deng, W. et al. (2020). Sharp changes in plant diversity and plant-herbivore interactions during the Eocene–Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global and Planetary Change, 194, 103293. doi:10.1016/j.gloplacha.2020.103293 This data contains herbivore damage patterns on fossil leaves of plant assemblages from the latest Eocene layer and the earliest Oligocene layer in Kajun Village, Markam County, southeastern margin of the Qinghai-Tibetan Plateau. Herbivore damage patterns on fossil leaves are essential to explore the evolution of plant-herbivore interactions under paleoenvironmental changes and to better understand the evolutionary history of terrestrial ecosystems. The Eocene–Oligocene transition (EOT) is a period of dramatic paleoclimate changes that significantly impacted global ecosystems, Researchers identified taxonomic composition of the flora, and investigated well-preserved herbivore damage on fossil leaves from two layers(the latest Eocene layer (MK-3, ~34.6 Ma) and the earliest Oligocene layer (MK-1, ~33.4 Ma)) of the Lawula Formation in Markam County, southeastern Qinghai-Tibetan Plateau (QTP), China. The data contains tables of the records of the leaves fossil, the fileds of the tables are as following: Basic Code; Database RFID; Family code; Genera code; Species code; Marks; Plant-herbivore; Leaves for damage; FFGs & DTs; Code marks; Hole feeding; Margin feeding; Skeletonization; Surface feeding; Piercing & Sucking; Oviposition; Mining; Galling; Fungal; Incertae Sedis; Boring; Undefined This dataset also contains some figures in the article.
DENG Weiyudong, SU Tao
This dataset is derived from the paper: Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 This data contains supplementary material of this article. Researchers discovered well-preserved palm fossil leaves from the Lunpola Basin (32.033°N, 89.767°E), central Tibetan Plateau at a present elevation of 4655 m in 2016. Researchers compared the newly discovered fossil with those present fossil that are most similar, find that there is no similar leaves among present fossil, therefore, researchers proposed the new species <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. Using the climate model, combined with the research of the fossil, researchers rebuilt the paleoelevation of the central Tibetan Plateau, it shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. The data contains the following tables: 1) Table S1. Fossil records of palms around the world. 2) Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera. 3) Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. This dataset also contains the figures in the supplementary material in the article.
SU Tao
This data was illustarted section histogram of Baingoin locality, based on result of geological survey on Tibetan Plateau in recent years. The thickness of stratigraphic level was measured artificially, rock character was identified by well-experienced geological worker. Fossils were discovered and clearly marked in the section. Stratigraphic and lithologic data obtained from geological survey was organized systematically after field work, adding relevant text. The content of data is very detailed, with significance in geological and topographic research in Baingoin locality and Northern Tibetan Plateau, especially in tectonics in plateau uplift and paleo-altimetry.
SUN Boyang
This data is derived from the Supplementary Tables of the paper: Chen, F. H., Welker, F., Shen, C. C., Bailey, S. E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, R., Freidline, S. E., Yu, T. L., Skinner, M. M., Stelzer, S., Dong, G. R., Fu, Q. M., Dong, G. H., Wang, J., Zhang, D. J., & Hublin, J. J. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569, 409-412. This research is another breakthrough made by academician Fahu Chen and his team over the years research of human activities and environmental adaptation on the Tibetan Plateau. The research team analyzed the newly discovered hominid mandible fossils in Xiahe County, Gansu Province, China, and identified it belongs to Denisovan of the Tibetan Plateau, which suggested to call Xiahe Denisovan. The team conducted a multidisciplinary analysis of the fossil, including chronology, physique morphology, molecular archaeology, living environment and human adaptation. It is the first Denisovan fossil found outside the Denisova Cave in the Altai Mountains and the earliest evidence of human activity on the Tibetan Plateau (160 kyr BP). This study provides key evidence for further study of Denisovans' physical characteristics and distribution in East Asia, it also provides evidence of a deep evolutionary history of these archaic hominins within the challenging environment of the Tibetan Plateau. This data contains 6 tables, table name and contents are as follows: t1: Distances in mm between meshes generated from CT versus photoscans (PS). t2: Measurements of the Xiahe mandible after reconstruction. t3: Comparative Dental metrics. t4: Comparative crown morphology. t5: Uniprot accession numbers for protein sequences of extant primates used in the phylogenetic analyses. t6: Specimen names and numbers.
CHEN Fahu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn