Numerical experiments: The climate model used is the fast air sea coupling model (FAMOUS) jointly developed by the British Meteorological Office and British universities The horizontal resolution of the atmospheric model in the FAMOUS model is 5 ° × 7.5 °, 11 layers in vertical direction; The horizontal resolution of the ocean model is 2.5 ° × 3.75 °, 20 layers in vertical direction The atmosphere and ocean are coupled once a day without flux adjustment The tests included the Middle Paleocene (MP,~60Ma BP, test name flat_60ma_1xCO2_sea_3d_ * * 100yr_mean. nc) and the Late Oligocene (LO,~25Ma BP, test name orog_25ma_1xCO2_sea_3d_ * * 100yr_mean. nc) The sea land distribution data is mainly taken from the global coastline basic data set (abbreviated as Gplates, website: http://www.gplates.org/ )Considering that the initial uplift of Cenozoic terrains such as the Qinghai Tibet Plateau started at about 50~55 Ma (Searle et al., 1987), the global terrain height was set to 0 in the MP test to omit the role of plateau terrain. At 25 Ma, Greenland (Zachos et al., 2001) and the Qinghai Tibet Plateau (for example, Wang et al., 2014; Ding et al., 2014; Rowley and Currie, 2006; DeCells et al., 2007; Polisar et al., 2009) were revised The change of ancient latitude is also considered when reconstructing the ancient topography of the Qinghai Tibet Plateau (Besse et al., 1984; Chatterjee et al., 2013; Wei et al., 2013) At the same time, referring to the change of Cenozoic atmospheric CO2 (Beerling and Royer, 2011), the atmospheric CO2 concentration in the two periods of experiments was 280 ppmv (1 ppmv=1 mg L – 1) before the industrial revolution For simplicity, all land vegetation and soil properties are set to globally uniform values, that is, various land surface properties on each land grid point except Antarctica are assigned to the global average value of non glacial land surface before the industrial revolution, which is also convenient for highlighting the impact of land sea distribution and topographic changes In addition, since we mainly discuss the average climate state and its change in the characteristic geological period on the scale of millions of years, we can omit the influence of orbital forcing, that is, the Earth's orbital parameters are set to their modern values in all experiments Output time: All tests were integrated for 1000 years, using the average results of the last 100 years of each test. This data is helpful to explore the formation and evolution mechanism of the Cenozoic monsoon and drought.
LIU Xiaodong
As one of the largest land mammals, the origin and evolution of the giant rhino Paraceratherium bugtiense in Pakistan have been unclear. We report a new species Paraceratherium linxiaense sp. nov. from northwestern China with an age of 26.5 Ma. Morphology and phylogeny reveal that P. linxiaense is the highly derived species of the genus Paraceratherium, and its clade with P. lepidum has a tight relationship to P. bugtiense. Based on the paleogeographical literature, P. bugtiense represents a range expansion of Paraceratherium from Central Asia via the Tibetan region. By the late Oligocene, P. lepidum and P. linxiaense were found in the north side of the Tibetan Plateau. The Tibetan region likely hosted some areas with low elevation, possibly under 2000 m during Oligocene, and the lineage of giant rhinos could have dispersed freely along the eastern coast of the Tethys Ocean and perhaps through some lowlands of this region.
DENG Tao
This data is the set of surface dust properties in high mountain and canyon area of Hengduan Mountain, including magnetic data and geochemical data. The analysis of magnetic susceptibility and geochemical elements was completed at the Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, China. The magnetic susceptibility was measured by Bartington MS2 magnetic susceptibility meter. The geochemical elements were measured by PW2403 X-ray fluorescence spectrometer (XRF) produced by Philips in the Netherlands. This data provides the characteristics of magnetic susceptibility and geochemical elements of topsoil in the eastern Tibetan Plateau, which plays an important role in understanding the relationship between modern climate factors and magnetic susceptibility of topsoil in the eastern TP, and the source of dust source area, dust transport and atmospheric circulation model in the TP.
YANG Shengli, LI Qiong, XIA Dunsheng, LUO Yuanlong
In this paper, we review evidence for a major biotic turnover across the Oligocene/Miocene in the Tibetan Plateau region. Based on the recent study of six well-preserved fossil sites from the Cenozoic Lunpola and Nima basins in the central Tibetan Plateau, we report a regional changeover from tropical/subtropical ecosystems in the Late Oligocene ecosystem (26–24 Ma) to a cooler, alpine biota of the Early Miocene (23–18 Ma). The Late Oligocene fossil biota, comprising of fish (climbing perch), insects and plants (palms), shows that the hinterland of the Tibetan Plateau was a warm lowland influenced by tropical humidity from the Indian Ocean. In the Early Miocene, the regional biota became transformed, with the evolution and diversification of the endemic primitive snow carp. Early Miocene vegetation was dominated by temperate broad-leaved forest with abundant conifers and herbs under a cool climate, and mammals included the hornless rhinoceros, Plesiaceratherium, a warm temperate taxon. This dramatic ecosystem change is due to a cooling linked to the uplift of Tibetan region, from a Late Oligocene paleo-elevation of no greater than 2300 m a.s.l. in the sedimentary basin to a paleo-elevation of about 3000 m a.s.l. Another factor was the Cenozoic global climatic deterioration toward to an ice-house world.
DENG Tao
The data set contains the magnetism, grain size, geochemical element, chromaticity and organic carbon isotope data of 119 topsoils in the middle and upper reaches of the Yarlung Zangbo River, southern Tibetan Plateau; contains the age, magnetism, grain size, geochemical element, chromaticity and organic carbon isotope data of the five aeolian sedimentary sections in this region; and contains chronological data of 36 aeolian sediments, provenance data of 46 samples from different sediments, and Sr-Nd isotopic data of 21 samples from different sediments. The magnetic susceptibility was measured using a Bartington MS2 metre with a dual-frequency sensor; The anhysteretic remanent magnetization was induced by LDA-5 demagnetizer, and was measured using a JR-6A Minispin magnetometer; The grain size was measured by Malvern Mastersizer 2000 laser particle size analyzer; The geochemical element was determined by X-ray fluorescence spectrometer; The chromaticity was measured by CM-700d spectrophotometer; The organic carbon isotope was determined by element analyzer-stable isotope ratio mass spectrometer (EA-IRMS); Optically stimulated luminescence measurements were conducted using an automated Risø-TL/OSL-DA-20 reader; For the AMS14C and Sr-Nd isotope measurements, please refer to the main body of the scientific research report. The data set is rich in information, authentic and reliable, and provides an important data reference for understanding the physical and chemical properties of surface dust, provenance, and the long-term evolution history of ancient dust in Yarlung Zangbo River basin, southern Tibetan Plateau. Funded project: The Second Tibetan Plateau Scientific Expedition Program (STEP), Task 6 Topic 2 "Dust aerosol and its climatic and environmental effects" (2019QZKK0602).
XIA Dunsheng, YANG Shengli, YANG Junhuai, WANG Shuyuan, LING Zhiyong, WANG Fei
This dataset is derived from the paper: Tang, H. et al. (2020). Early Oligocene vegetation and climate of southwestern China inferred from palynology. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 109988. doi:10.1016/j.palaeo.2020.109988 This data is part of Supplementary data of the paper, maily contains: Supplementary table 1) Pollen percentages, which were calculated using the collected pollen samples. Supplementary table 2) Plant functional types (PFTs) for the reconstructed paleovegetation of three sites : Wenshan (Early Oligocene), Jianchuan (Early Oligocene) and Lühe (Late Eocene). Recently, in the town of Lühe, central Yunnan, SW China, a new fossil-bearing section was found and dated as early Oligocene (~33–32 Ma) according to U-Pb isotope of volcanic tuff. The fossil-bearing section totals about 18 m in thickness. Fifty-five pollen samples were collected vertically throughout this Lühe town section. For each sample, 2–2.5 g of sediment were treated with KOH (10%,) HCl (10%) and HF (39%), then sample residues were sieved through a 5 μm nylon mesh in an ultrasonic tank. Spore and pollen grains were identified using both a light microscope (LM, Leica DM1000 microscope) and a scanning electronic microscope (SEM). Single grains were picked up by a capillary tube and then transferred to a copper stub, coated with gold and observed with a Zeiss EVO LS10 SEM. At least 300 pollen grains were counted for each sample under the LM at ×400 magnification. Then the pollen percentages were calculated using the sum of total terrestrial pollen. The paleovegetation was reconstructed following the method described by Prentice et al., 1996, Prentice and Jolly, 2000 and Ni et al. (2010). The paleobiomes were reconstructed by comparing the similarity of the palaeoflora with modern plant functional types (PFTs), according to the data published by Ni et al. (2010). The similarity between the palaeoflora and modern PFTs data was explored using Euclidean distances (Prentice et al., 1996) and the Jaccard Index Coefficient (Pound and Salzmann, 2017). The Jaccard Index Coefficient in the R package “clusteval” was used here to calculate the similarity. The palaeoflora was assigned to the biome with the highest similarity scores, taking into account dominant or key taxa.
TANG He
The data include the Cenozoic plant fossils collected from Gansu, Qinghai and Yunnan by the Department of paleontology, School of Geological Sciences and mineral resources, Lanzhou University from 2019 to 2020. All the fossils were collected by the team members in the field and processed in the laboratory by conventional fossil restoration methods and cuticle experiment methods. The fossils are basically well preserved, some of which are horned The study of these plant fossils is helpful to understand the Cenozoic paleoenvironment, paleoclimate, paleogeographic changes and vegetation features of the eastern Qinghai Tibet Plateau.
YANG Tao
Airborne pollen is mainly produced and disseminated during the process of plant flowering, controlled by plant phenology and climatic conditions. As an important bioindicator of plant behavior, airborne pollen can supply information about reproductive phenology, climate and atmospheric circulations. From 2011 to 2013, airborne pollen samples were collected using a volumetric Burkard pollen trap at the Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS, 28.21°N, 86.56°E; 4276 m a.s.l.), on the northern slope of the Himalayas. The sampler is a volumetric air-suction device capable of continuously gathering pollen and spore particles. Air is drawn in at a speed of 10 l/min, and airborne particles are deposited on a sticky tape mounted on a drum that makes one complete rotation per week. The tape is changed weekly after a complete rotation. Then, the tape is removed and cut into seven pieces, with each piece representing one day of sampling. The pieces are mounted on slides using glycerin and safranin. Identification and counting of pollen grains were performed under an Olympus BX41 microscope at 400× magnification; all pollen grains on each slide were counted . Pollen concentration was expressed as the daily pollen grains per cubic meter of air using a constant air intake speed of 10 l/min. The pollen concentration and percentage of each pollen taxon in each year were calculated. The pollen sampling and lab process were followed the standard methods to ensure the authenticity and reliability of the data. The pollen data can provides insights into vegetation response to climate change and has significance for interpreting fossil pollen records.
LÜ Xinmiao
Data set contains tree age of trees growing at different glacier moraines in the central Himalayas. The data were obtained using tree ring samples. Cores samples were collected (almost near to the ground level to estimate the minimum age of the related moraine) using an increment borer. Samples were processed by using standard dendrochronological techniques.
SIGDEL Shalik Ram, ZHNAG Hui, ZHU Haifeng, SHER Muhammad, LIANG Eryuan
By archaeological investigation and excavation in Tibetan Plateau and Hexi corridor, we discovered more than 40 Neolithic and Bronze Age sites, including Zongri, Sanjiaocheng, Huoshiliang, Ganggangwa, Yigediwonan, Shaguoliang, Guandi, Maolinshan, Dongjicuona, Nuomuhong, Qugong, Liding and so on. In this dataset, there are some basic informations about these sites, such as location, longitude, latitude, altitude, material culture and so on. On this Basis, we identified animal remains, plant fossil, selected some samples for radiocarbon dating, optically stimulated luminescence dating, stable carbon, nitrogen isotopes, polle, fungal sporen and environmental proxies. This dataset provide important basic data for understanding when and how prehistoric human lived in the Tibetan Plateau during the Neolithic and Bronze Age.
YANG Xiaoyan, Lü Hongliang, LIU Xiangjun, HOU Guangliang
This dataset is provided by the author of the paper: Huang, R., Zhu, H.F., Liang, E.Y., Liu, B., Shi, J.F., Zhang, R.B., Yuan, Y.J., & Grießinger, J. (2019). A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Climate Dynamics, 53(5-6), 3221-3233. In this paper, in order to understand the past few hundred years of winter temperature change history and its driving factors, the researcher of Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences and CAS Center for Excellence in Tibetan Plateau Earth Sciences. Prof. Eryuan Liang and his research team, reconstructed the minimum winter (November – February) temperature since 1340 A.D. on southeastern Tibetan Plateau based on the tree-ring samples taken from 2007-2016. The dataset contains minimum winter temperature reconstruction data of Changdu on the southeastern TP during 1340-2007. The data contains fileds as follows: year Tmin.recon (℃) See attachments for data details: A tree ring-based winter temperature reconstruction for the southeasternTibetan Plateau since 1340 CE.pdf
HUANG Ru, ZHU Haifeng, LIANG Eryuan
This dataset contains data on the lake core sporopollen spectrum and temperature/precipitation reconstruction sequence of Yamdrog Yumtso Lake in the southern Tibetan Plateau. It is used to study the environmental changes in the Yamdrog Yumtso region by 20 ka. It is obtained by the sporopollen analysis method. This data set is obtained by laboratory measurement and calculation. The samples and data are collected and identified in strict accordance with relevant operating procedures at all stages. There are three subtables in this dataset. The first two tables comprise the following analysis data of TC1 pore sporopollen samples. Field 1: Sample Number Field 2: Sample Depth Unit: cm Field 3: Sample Age Unit: aBP Field 4: Total sporopollen concentration Units: granules/gram Field 5: Total Pollen Granules Unit: Number of grains Field 6: Total number of indicative pollen Unit: Number of grains Field 7: Identification of indicative pollen number Unit: Number of grains Field 8: Sample Weight Unit: Grams Field 9: Concentration Coefficient Units: granules / gram Field 1: Sample Number Field 2: Plant species Field 3: Pollen content Unit: % The third subtable is the reconstructed temperature precipitation and has 6 fields. Field 1: Sample Code Field 2: Sample Name Field 3: Depth Unit: cm Field 4: Age Unit: aBP Field 5: Average annual temperature Unit: 0.1 °C Field 6: Annual precipitation Unit: 0.1 mm The rock core was collected from the Yamdrog Yumtso Basin in the southern part of the Tibetan Plateau. The approximate sampling location is 90°27′E,28°56′N, and the altitude there is 4425 m.
WANG Junbo, LV Houyuan
This dataset contains the sequence data of the lake core TOC, CaCO₃, particle size and environmental magnetism parameters from 600 years to 1998 of Yamdrog Yumtso in the southern part of the Tibetan Plateau. It is used to study the environmental changes in the Yamdrog Yumtso region in the 1400 years. This data set is obtained from laboratory measurements. The data are obtained immediately after the completion of the instrument or experiment. The samples and data are collected in strict accordance with relevant operating procedures at all stages and comply with the laboratory operating standards. The TOC analysis is undertaken by a CS-344 analyzer, The CaCO₃ content is measured by the general chemical method, the particle size is measured with a Malvern Mastersizer 2000 laser particle sizer, and the environmental magnetism parameters are measured with a Kappa Bridge, DIGICO magnetometer and superconducting magnetometer. The rock core was collected from Chen Co Lake in the Yamdrog Yumtso Basin in the southern part of the Tibetan Plateau; the approximate sampling location is 90.49E, 28.93N, and the lake’s elevation is 4420 m.
ZHU Liping
This is the core XRF scan data of Selincuo Lake in 2017. The main parameters include magnetic susceptibility and the abundance of each mineral element.
WANG Junbo
In this dataset samples were obtained from groundwater outcrop points and surface water points through the field hydrogeological survey of mabongshan, and the analysis data of deuterium - oxygen - 18 and tritium were obtained by sending them to the laboratory with relevant qualification. This dataset can obtain the isotopic information of groundwater and surface water in the research area of the project, and provide data reference for the water circulation law in the research area.
GUO Yonghai
The project studying the evolution pattern and development trend of the arid environment in western China was a major research component of the project Environmental and Ecological Science for West China, which was funded by the National Natural Science Foundation of China. The leading executive of the project was Academician Zhisheng An from the Institute of Earth Environment of the Chinese Academy of Sciences. The project ran from January 2002 to December 2004. The data collected by the project include the following: 1. History and variability data for arid regions in western China: 1) Chinese Loess Plateau mass accumulation rate data (3600-0 kyr BP): Fields include age and mass accumulation rate (MAR) (txt file). 2) Chinese Loess Plateau grain size and magnetic susceptibility data (3600-0 kyr BP): Fields include age, stacked mean grain size, and stacked magnetic susceptibility (txt file). 2. Sporopollen content data of different loess strata since 12 kyr BP in the Yaozhou District of Shanxi Province (excel table): The distributions of 27 species of sporopollen (0-397 cm) from 67 different layers of loess samples are included. 3. 10Be record data (table) 10Be concentration, magnetic susceptibility and bulk density data of loess with different thicknesses (79.67- 0.09 kyr BP). 4. Simulation data on the modulation of the East Asian monsoon resulting from orbital variability driven by the uplift of the Tibetan Plateau: ah0-sum.nc nc file, hh0-sum.nc nc file, jfh0-sum.nc nc file, kdh0-sum.nc nc file, lfh0-sum.nc nc file, mask.nc nc file, phis.nc nc file.
AN Zhisheng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn