This dataset is based on the Tibet Statistical Yearbook and Qinghai Statistical Yearbook (2020). The two books contain statistical data on the economic and social development of the Tibet Autonomous Region and Qinghai Province since 2019, mainly from 1951 to 2020. Extract the agricultural aspects, from the basic situation of rural areas and agriculture, the basic situation of rural areas, rural employees, the total output value of agriculture, forestry, animal husbandry and fishery in sub-regional cities, the sown area of main crops, the output of main agricultural products, the output per unit area of main agricultural products, and the sown area of crops It is an important statistical data for people from all walks of life at home and abroad to understand the Qinghai-Tibet Plateau and the Qinghai-Tibet Plateau.
TANG Yawei TANG Yawei
This data comes from a random questionnaire survey conducted in the one-river-two-river region of Tibet, southeastern Tibet, and Hengduan mountainous area of eastern Sichuan and Tibet during July-August 2020. The data set mainly includes agricultural waste utilization data (straw utilization and livestock and poultry wastes). Utilization methods), straw utilization methods mainly include returning to the field, fuel, feed and compost, and livestock and poultry manure utilization methods mainly include fuel and fertilizer. The interviewees were mainly adults who were familiar with the family situation. In some villages, the output was calculated in small groups. The questionnaire design is based on the principles of scientificity, applicability, feasibility, typicality and specificity, and the "Household Questionnaire" is designed for the above areas. In order to ensure the reliability and validity of the questionnaire design content, the questionnaire was pre-investigated before the formal investigation, and there were problems in further modifying and improving the questionnaire. Before the official start of the questionnaire, the investigators were given the explanation of the content of the questionnaire and the training of investigation skills.
SONG Dagang SONG Dagang
This dataset is about the historical yield data (yield per unit area and sown area) of the main crops (hull-less barley and wheat) on Tibetan Plateau between years 1988-2018, covering some prefectures and cities located in Tibetan Plateau. The data are obtained from Tibet Statistical Yearbook, Qinghai Statistical Yearbook, Sichuan Statistical Yearbook, Gansu Statistical Yearbook, Yunnan Statistical Yearbook and the aba Tibetan and Qiang Autonomous Prefecture and Ganzi Tibetan Autonomous Prefecture Agriculture and Animal Husbandry Bureau with the same accuracy. Hull-less barley and wheat are the main crops on the Tibetan Plateau. This data set is of great value for the study of food security and agricultural production on Tibetan Plateau.
PAN Zhifen
The data from the Digital Mountain Map of China depicts the spatial pattern and complex morphological characteristics of mountains in China from a macro scale, including the mountains’ spatial distribution, classification, morphological elements and area ratio. It is a set of basic data that can be used for mountain zoning, mountain genetic classification and resource environment correlation analysis. Mountains carry great natural resource supply, provide ecological service and regulation functions, and play an important part in eco-civilization construction and socioeconomic development in China. Lately,Prof. Li Ainong of the Institute of Mountain Hazards and Environment, CAS, developed this data set based on the spatial definition of mountains, an a topography adaptive slide window method for the relief amplitude. The data include: (1) Spatial distribution of mountains in China; (2) Mountain classification; (3) Main mountain ranges (with range alignment, relief grade and ridge morphology); (4)Main mountain peaks; (5)Mountain proportion table of the provinces/autonomous regions/municipalities of China; (6) Contour zoning data; (7) General situation of mountain formation; (8)Mountain division and zoning data; (9) List of main mountain peaks. The spatial resolution of the original DEM source is about 90m. And the boundaries of mountains have been revised with multisource remote sensing data, which has good spatial consistency with the relief shading map. The cartographic generalization accuracy of mountain ranges and relevant features is 1:1 000 000. Mountain features in this data set have higher spatial resolution and pertinence, which are available for the zonality of mountain environment and mountain hazards, and the spatial analysis for ecological, production and living spaces in mountain areas, surpporting macro decision-making on mountain areas' development in China. p
NAN Xi , LI Ainong , DENG Wei
1) Soil environmental quality data of typical industrial parks in Huangshui basin of Qinghai Province provide basic support for soil pollution control caused by regional industrial activities; 2) The data source is the soil samples of typical areas in Huangshui River Basin. After collection, the samples are quickly stored in the refrigerator at - 4 ℃ and sent to the laboratory as soon as possible. After pretreatment, the relevant parameters are tested; 3) The process of sample collection and transportation meets the specifications, and the experimental detection process strictly follows the relevant standards. Due to the changes of various factors of soil environment, the results are only aimed at the investigation results; 4) The data can be used to analyze regional soil pollution and heavy metal risk assessment;
WANG Lingqing
The Wuyu Basin is bounded by the Gangdese Mountains to the north and the Yarlung Tsangpo River to the south, and is a representative basin to study the Cenozoic tectonism of the southern Tibet. The sedimentary strata in the Wuyu Basin include the Paleocene-Eocene Linzizong Group volcanics and the Oligocene Rigongla Formation (Fm.) volcanics, the Miocene lacustrine sediments of the Mangxiang Fm. and Laiqing Fm. volcanics, the late Miocene-Pliocene Wuyu Fm., and the Pleistocene Dazi Fm. Five sandstone samples from the Mangxiang Fm., Wuyu Fm. and Dazi Fm. and one modern Wuyu reiver sand sample were collected for detrital zircon U-Pb dating using the LA-ICP-MS method. Detrital zircon U-Pb ages in the Mangxiang Fm. show a large cluster at 45-80 Ma; those in the Wuyu Fm. show a large cluster at 8-15 Ma and a subsidiary cluster at 45-70 Ma; those in the Dazi Fm. show three large clusters at 45-65 Ma, 105-150 Ma and 167-238 Ma; and those in modern Wuyu river show a large cluster at 8-15 Ma and a subsidiary cluster at 45-65 Ma (Figure 1). Late Cretaceous-early Eocene zircons in all samples are consistent with the most prominent stage of magmatism of the Gangdese Mountains; the 8-15 Ma zircons in the Wuyu Fm. and modern Wuyu river are consistent with the magmatism of the Laiqing Fm.; and the Triassic-Jurassic zircons in the Dazi Fm. are consistent with the magmatism of the central Lhasa terrane. The results of detrital zircon U-Pb ages and sedimentary facies analyses in the Wuyu Basin indicate that the southern Tibetan Plateau suffered multi-stage tectonism-magmatism since the India-Asia collision: (1) Paleogene Linzizong Group-Rigongla Fm. volcanics; (2) tectonism-magmatism at ~15 Ma ended the lacustrine sediments of the Mangxiang Fm. and resulted in volcanism of the Laiqing Fm.; (3) tectonism at ~8 Ma resulted in the volcanic rocks of the Laiqing Fm. becoming one of the main provenances for the overlying Wuyu Fm.; (4) the Wuyu Basin formed braided river and received sediments from the central Lhasa terrane to its north at ~2.5 Ma. The geomorphic pattern of the southern Tibet has gradually formed since the Quaternary.
MENG Qingquan MENG Qingquan
The Central Asia West Asia economic corridor is dominated by deserts, mountains and plateaus, with an average altitude of about 1000m. The climate is extremely arid, the desert distribution area is large, the ecology is fragile, the dry and hot season lasts for a long time, up to 7 months, and the annual average rainfall is only 150mm at most. There are great differences in natural environment and complex geological conditions in the area. Under the compound driving action of regional differentiated structure, earthquake, meteorology, hydrology and ecology, debris flow and landslide are widely distributed in the corridor. Based on remote sensing images, the landslide and debris flow disasters in China Central Asia West Asia economic corridor are interpreted. Statistics show that 303 landslides and 2159 debris flow disasters are developed in China Central Asia West Asia economic corridor. Debris flows mainly include freeze-thaw debris flow, ice water debris flow and rainstorm debris flow.
ZOU Qiang
Velocity is an important parameter to reflect the dynamics of slope. A velocity sensors are arranged on the top of slope of the Xiaguiwa bedding rock model slope. A velocity sensor is arranged on the shaking table to record the real velocity state of the input seismic wave. The collected data are filteringed, noise reduction, screened and other processing steps to obtain the velocity data set of the bedding rock model slope; The peak values of the velocity data of the model slope under the same load condition can reflect the dynamic response law of the slope under such seismic action. The ratio of the peak velocity on the slope to the peak velocity on the table reflects the enhancement level of the velocity response of the slope top under seismic action.
GUO Mingzhu
Displacement is an important parameter to reflect the dynamics of slopes. Six acceleration sensors on the interface of weak and hard lithology and three acceleration sensors on the slope surface of the Xiaguiwa bedding rock model slope were selected as the study samples. The acceleration data of the study samples were processed by filtering, noise reduction and screening, and then quadratic integration and zero line callback were performed to calculate the peak displacement under the amplitude of 0.3g~0.8g Maoxian wave, and the displacement data set of the shaking table model test was obtained for the bedding rock model slope; the two sets of data on the weak and hard lithology interface can reflect the influence of the weak rock layer on the displacement of the bedding rock slope under the seismic action; The two sets of data on the interface of weak and hard lithology can reflect the influence of weak rock layer on the displacement of the bedding rock slope under the seismic effect; The set of data on the slope table can reflect the displacement relationship of various positions on the slope table;
GUO Mingzhu
Displacement is an important parameter reflecting the characteristics of slope dynamics. The displacement data set is obtained by arranging one displacement measurement point at each of the toe, middle, shoulder and top of the counter-bedding model slope, collecting displacement data every one minute, correcting the collected data and deleting the abnormal data at the end of each point, and obtaining the displacement data set of the counter-bending rock slope shaking table model test; The displacement data set of the model slope under the same working condition can reflect the relationship between the displacement of the toe, middle, shoulder and top of the slope under such seismic action, and the displacement data set of the model slope under different working conditions can reflect the damage mechanism of the counter-beddomg rock slope with the accumulation of seismic action.
GUO Mingzhu
This data is mainly for on-site monitoring and collection of micro-seismic wave signals generated when rock fracture or dislocation occurs in the slope body. For data collection, four three-component geophones (G1-G4) arranged on site transmit the picked signals to the collector, which converts the received analog signals into digital signals, and transmits the collected microseismic data to the control system through 4G wireless network. Waveform processing software Trace and Vantage were used to interpret and analyze the collected microseismic wave signals, so as to determine the location, magnitude, quantity and energy release of microseismic events. The spatial distribution and spatial-temporal evolution characteristics of microseismic events can be obtained through sorting and analysis of the data. Combined with the change law of historical parameters, the macroscopic fracture state of rock mass in different periods can be revealed, which provides a basis for the stability evaluation of The Baige slope.
CHEN Fei
Velocity is an important parameter to reflect the dynamics of slope. A velocity sensors are arranged on the top of slope of the Xuelongnang counter-bedding rock model slope. A velocity sensor is arranged on the shaking table to record the real velocity state of the input seismic wave. The collected data are filteringed, noise reduction, screened and other processing steps to obtain the velocity data set of the counter-bedding rock model slope; The peak values of the velocity data of the model slope under the same load condition can reflect the dynamic response law of the slope under such seismic action. The ratio of the peak velocity on the slope to the peak velocity on the table reflects the enhancement level of the velocity response of the slope top under seismic action.
GUO Mingzhu
Acceleration is an important parameter to reflect the dynamics of slope. Fifteen acceleration sensors are arranged on the slope surface, lithological interface and inside the slope of the Xuelongnang counter-bedding rock model slope. An acceleration sensor is arranged on the shaking table to record the real acceleration state of the input seismic wave. The collected data are filteringed, noise reduction, screened and other processing steps to obtain the acceleration data set of the counter-bedding rock model slope; The peak values of the acceleration data of the model slope under the same load condition can reflect the dynamic response law of the slope under such seismic action, and the ratio of the peak acceleration on the slope to the peak acceleration on the table can reflect whether the slope is enhanced or attenuated at each location under the seismic action.
GUO Mingzhu
Acceleration is an important parameter to reflect the dynamics of slope. Twenty-two acceleration sensors are arranged on the slope surface, lithological interface and inside the slope of the Xiaguiwa bedding rock model slope. An acceleration sensor is arranged on the shaking table to record the real acceleration state of the input seismic wave. The collected data are filteringed, noise reduction, screened and other processing steps to obtain the acceleration data set of the bedding rock model slope; The peak values of the acceleration data of the model slope under the same load condition can reflect the dynamic response law of the slope under such seismic action, and the ratio of the peak acceleration on the slope to the peak acceleration on the table can reflect whether the slope is enhanced or attenuated at each location under the seismic action.
GUO Mingzhu
Two types of seismic waves are used as dynamic inputs, one is synthetic waves, including sine waves and synthetic waves with different transcendence probabilities; the other is natural waves, selecting Wenchuan Wolong waves and Maoxian waves. The sine wave amplitude and frequency are unique, so they can be used to study the influence of ground motion parameters on the dynamic response of slopes; the natural waves are selected from the soil layer waves recorded at Wolong station and bedrock seismic waves recorded at Maoxian station during the Wenchuan earthquake, aiming to investigate the influence of different types of seismic wave inputs on the dynamic response of rock slopes by comparing the dynamic response law of slopes under the action of two types of seismic waves. White noise was performed after each loading to analyze the natural characteristics of the slope. A 10-minute stay after each loading was used to take pictures and observe the damage of the slope.
GUO Mingzhu
A total of two types of seismic waves are used as input in the test, one type is sinel wave; the other type is natural wave, and the natural wave is adopted from Wenchuan Maoxian wave. The sine wave amplitude and frequency are unique, so it can be used to study the influence of ground motion parameters on the dynamic response of slopes. By comparing the dynamic response of slopes under the action of sine waves with different frequencies and amplitudes, the influence of the input seismic wave parameters on the dynamic response of rock slopes is investigated; the natural waves are selected from the bedrock seismic waves recorded at the Maoxian station. The seismic wave input is loaded in a step-by-step manner, firstly loading the sine wave with low amplitude, and then loading the Wenchuan Maoxian wave with 0.1g increase, and after each loading, white noise is carried out to analyze the natural characteristics of the slope. After each loading was completed, 10 minutes were spent to take pictures and observe the damage of the slope.
GUO Mingzhu
(1) Data content: This data set is based on the Xiaguiwa landslide in the Sanjiang basin of the Qinghai-Tibet Plateau, reconstructing the bedding slope of the Xiaguiwa landslide; the bedding slope of the Xiaguiwa landslide is used as a reference for shaking table model tests, which is used to design the shaking table model test model and sensor layout diagram for the bedding rock slope, with a weak rock layer in the model slope, and the sensors deployed are acceleration sensors and velocity sensors, and the measured (2) Data source and processing method: The data set is drawn by Guo Mingzhu of Beijing University of Technology using CAD software. (3) The data provide reference for the subsequent shaking table model test implementation.
GUO Mingzhu
(1) Data content: This data set is based on the Xuelongnang landslide in the Sanjiang basin of the Qinghai-Tibet Plateau, and reconstructs the counter-bedding slope before the slide; the counter-bedding slope before the slide is used as a reference for the shaking table model test, which is used to design the shaking table model test model and the sensor layout diagram for the counter-bedding rock slope, and a special joint is set in the model slope, and the deployed sensors are the acceleration sensors and the velocity sensors. (2) Data source and processing method: The data set is drawn by Guo Mingzhu of Beijing University of Technology using CAD software. (3) The data provide reference for the subsequent shaking table model test implementation.
GUO Mingzhu
This data is the inclinometer monitoring data of Baige landslide in Jinshajiang River, which mainly considers the deep deformation monitoring of the landslide. Combined with the site geological conditions, three monitoring profiles are arranged, with a total of 7 boreholes, more than 600 meters in total, and the boreholes are vertically distributed. The field manual monitoring method is adopted, and the data is processed with Excel software. The data show that shear zones have been formed in some boreholes. Combined with the field macro deformation and geological drill hole histogram analysis, the position of the formed shear zone is consistent with the field geological situation, which proves the reliability of the data. At the same time, the displacement of shear band is further analyzed, and the deformation does not converge. Through the analysis of the data, the depth range, monitoring and early warning of the crack area of Baige landslide are determined, and technical support is provided for landslide treatment.
CHEN Fei
Through the investigation of tourist spots, tourist routes and tourist areas at different levels, form photos and video data of tourism resources, tourism services and tourism facilities of scenic spots, scenic spots, corridors and important tourism transportation nodes, tourism villages and tourism towns, record the tourism development status, find problems in tourism development, and form corresponding ideas for the construction of world tourism destinations; The data sources are UAV, tachograph and camera, mobile phone and GPS, and are divided into different folders according to scenic spots and data categories; The data has been checked for many times to ensure its authenticity; This data can provide a traceable basis for the construction of world tourism destinations on the Qinghai Tibet Plateau.
SHI Shanshan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn