This data includes: 30m mountain flood comprehensive risk data, 30m mountain flood risk data, 30m mountain flood disaster bearing body data and 30m mountain flood vulnerability distribution data in the Himalayas. Based on the results of national investigation and evaluation of mountain flood disasters, the distribution of comprehensive risk indicators of mountain flood disasters in the study area, the distribution of mountain flood risk indicators in each administrative village, the distribution of mountain flood disaster bearing body indicators and the distribution of mountain flood vulnerability indicators are obtained, forming the comprehensive risk distribution data of mountain flood disasters in the Himalayas. This data is helpful to analyze the spatial variation characteristics and distribution law of mountain flood disaster. The zoning of mountain flood disaster risk plays a guiding role in the flood control management and deployment of flood control emergency departments.
WANG Zhonggen
1) The work of automatically dividing a wide and complex geospatial area or even a complete watershed into repeatable and geomorphically consistent topographic units is still in the stage of theoretical concept, and there are great challenges in practical operation. Terrain unit is a further subdivision of topography and geomorphology, which can ensure the maximum uniformity of geomorphic features in slope unit and the maximum heterogeneity between different units. It is suitable for geomorphic or hydrological modeling, landslide detection in remote sensing images, landslide sensitivity analysis and geological disaster risk assessment. 2) Slope unit is an important type of topographic unit. Slope unit is defined as the area surrounded by watershed and catchment line. In fact, the area surrounded by watershed and catchment line is often multiple slopes or even a small watershed. Theoretically, each slope unit needs to ensure the maximum internal homogeneity and the maximum heterogeneity between different units. The slope unit is an area with obviously different topographic characteristics from the adjacent area. These topographic characteristics can be based on the characteristics of catchment or drainage boundary, slope and slope direction, such as ridge line, valley line, platform boundary, valley bottom boundary and other geomorphic boundaries. According to the high-precision digital elevation model, the slope unit with appropriate scale and quality can be drawn manually, but the manual drawing method is time-consuming and error prone. The quality of the divided slope unit depends on the subjective experience of experts, which is suitable for small-scale areas and has no wide and universal application value. Aiming at the gap in practical operation in this field, we propose an innovative modeling software system to realize the optimal division of slope units. Automatic division system of slope unit based on confluence analysis and slope direction division v1 0, written in Python programming language, runs and calculates as the grass GIS interpolation module, and realizes the automatic division of slope units in a given digital elevation data and a set of predefined parameters. 4) Based on python programming language, the code is flexible and changeable, which is suitable for scientific personnel with different professional knowledge to make a wide range of customization and personalized customization. In addition, the software can provide high-quality slope unit division results, reflect the main geomorphic characteristics of the region, and provide a based evaluation unit for fine landslide disaster evaluation and prediction. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development.
YANG Zhongkang
1) In mountainous areas, due to the complex topographic and geological background conditions, landslides are very easy to occur triggered by external factors such as rainfall, snow melting, earthquake and human engineering activities, resulting in the loss of life and property and the destruction of the natural environment. In order to meet the safety of project site construction, the rationality of land use planning and the urgent needs of disaster mitigation, it is necessary to carry out regional landslide sensitivity evaluation. When many different evaluation results are obtained by using a variety of different methods, how to effectively combine these results to obtain the optimal prediction is a technical problem that is still not difficult to solve at present. It is still very lack in determining the optimal strategy and operation execution of the optimal method for landslide sensitivity evaluation in a certain area. 2) Using the traditional classical multivariate classification technology, through the evaluation of model results and error quantification, the optimal evaluation model is combined to quickly realize the high-quality evaluation of regional landslide sensitivity. The source code is written based on the R language software platform. The user needs to prepare a local folder separately to read and store the software operation results. The user needs to remember the folder storage path and make corresponding settings in the software source code. 3) The source code designs two different modes to display the operation results of the model. The analysis results are output in the standard format of text and graphic format and the geospatial mode that needs spatial data and is displayed in the standard geographic format. 4) it is suitable for all people interested in landslide risk assessment. The software can be used efficiently by experienced researchers in Colleges and universities, and can also be used by government personnel and public welfare organizations in the field of land and environmental planning and management to obtain landslide sensitivity classification results conveniently, quickly, correctly and reliably. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development
YANG Zhongkang
1) Data content: this data set is the landslide disaster data of Sanjiang Basin in the southeast of Qinghai Tibet Plateau; 2) Data source and processing method: this data set was independently interpreted by Dai Fuchu of Beijing University of technology using Google Earth; This data file is finally formed by remote sensing interpretation - on-site verification - re interpretation - re verification and other methods after 7 systematic interpretation. More than 5000 landslides have been verified on site with high accuracy; 4) This data has broad application prospects for hydropower resources development, traffic engineering construction and geological disaster evaluation in the three river basins in the southeast of Qinghai Tibet Plateau.
DAI Fuchu
Data content: Basic data of the Baige landslide dam Data source: literature search, field investigation (Baige dam site), institutional investigation (Ganzi Hydrological Bureau, Chengdu survey, design and Research Institute). Collection method: use camera to take site photos during field investigation; Consult the collection materials of relevant institutions to obtain the basic data of Baige weir plug dam. Data quality description: detailed hydrological data were obtained through institutional investigation, including the data of Batang and Gangtuo hydrological stations and the changes of water level and flow in front of the dam in Ganzi Hydrological Bureau. These data will provide important theoretical basis and reference for further analysis of outburst flood in the Qinghai Tibet Plateau.
ZHANG Xinhua
The Slope Length and Stepness Factor (LS) dataset of Pan-third pole 20 country is calculated based on the free accessed 1 arc second resolution SRTM digital elevation data (Shuttle Radar Topography Mission, SRTM; the website is http://srtm.csi.cgiar.org). After the pre-processing such as pseudo edge removal, filtering and noise removal, the LS factor with 7.5 arc second resolution was calculated with the LS factor algorithm in CSLE model and the LS calculation tool (LS_tool) developed in this project. The LS factor data of Pan-third pole 20 countries is the fundamental data for soil erosion rate calculation based on CSLE, and it also the fuandatmental data for analyzing the erosion topographic characteristics of Pan third pole 20 countries (such as macro distribution and micro pattern of elevation, slope and slope) . The dataset if of great importance for the analysis of geomorphic characteristics and geological disaster characteristics in this area.
YANG Qinke
1)The dataset includes the grid data of vegetation coverage and biological measure factor B of 20 countries in key regions, with a spatial resolution of 300 meters. 2)The basic data source is the MODIS MOD13Q1 product from 2014 to 2016 with a spatial resolution of 250 m. Based on this, a 24-half month average vegetation coverage raster data during a 3 year period was calculated, and then the soil loss ratio was calculated according to the land type. The, the 24- half months rainfall erosivity was further weighted and averaged to obtain a grid map of vegetation coverage and biological measures B factor. 3)MOD13Q1 remote sensing vegetation data was processed by cloud removal. The calculated B factor was statistically analyzed by landuse types and rationality analyzed. The final data quality is good. 4)The factor B of vegetation coverage and biological measures reflects the impact of surface land use/vegetation coverage on soil erosion, and is of great significance for soil erosion simulation and spatial pattern analysis in 20 key regions.
ZHANG Wenbo
Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote sensing technology has become an important means of quickly obtaining ground temperature over large areas. However, there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60% of the global surface every day. This article presents a unique LST dataset with a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated LST error, and the data performance is then further improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground observation data shows that the root mean square error (RMSE) ranges from 1.24 to 1.58 K, the mean absolute error (MAE) varies from 1.23 to 1.37 K and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1K (R>0:71, P<0:05), and a strong negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high-temperature and drought-monitoring studies. More detail please refer to Zhao et al (2020). doi.org/10.5281/zenodo.3528024
MAO Kebiao
The Land Surface Temperature in China dataset contains land surface temperature data for China (about 9.6 million square kilometers of land) during the period of 2003-2017, in Celsius, in monthly temporal and 5600 m spatial resolution. It is produced by combing MODIS daily data(MOD11C1 and MYD11C1), monthly data(MOD11C3 and MYD11C3) and meteorological station data to reconstruct real LST under cloud coverage in monthly LST images, and then a regression analysis model is constructed to further improve accuracy in six natural subregions with different climatic conditions.
MAO Kebiao
Data from EM-DAT. EM-DAT is a global database on natural and technological disasters, containing essential core data on the occurrence and effects of more than 21,000 disasters in the world, from 1900 to present. EM-DAT is maintained by the Centre for Research on the Epidemiology of Disasters (CRED) at the School of Public Health of the Université catholique de Louvain located in Brussels, Belgium.The main objective of the database is to serve the purposes of humanitarian action at national and international levels. The initiative aims to rationalise decision making for disaster preparedness, as well as provide an objective base for vulnerability assessment and priority setting.The database is made up of information from various sources, including UN agencies, non-governmental organizations, insurance companies, research institutes and press agencies. Priority is given to data from UN agencies, governments, and the International Federation of Red Cross and Red Crescent Societies. This prioritization is not only a reflection of the quality or value of the data, it also reflects the fact that most reporting sources do not cover all disasters or have political limitations that could affect the figures. The entries are constantly reviewed for inconsistencies, redundancy, and incompleteness. CRED consolidates and updates data on a daily basis. A further check is made at monthly intervals, and revisions are made at the end of each calendar year.
GE Yong, LI Qiangzi, DONG Wen
The UHSLC offers tide gauge data with two levels of quality-control (QC). Fast Delivery (FD) data are released within 1-2 months of data collection and receive only basic QC focused on large level shifts and obvious outliers. The GLOSS/CLIVAR (formerly known as the WOCE) "fast" sea level data is distributed as hourly, daily, and monthly values. This project is supported by the NOAA Climate and Global Change program, and is one of the activities of the University of Hawaii Sea Level Center. Each file is given a name "h###.dat" where "h" denotes hourly sea level data and "###" denotes the station number. A file exists for every station with hourly data. The UHSLC datasets are GLOSS data streams (read more here). There are many tide gauge records in the UHSLC database, but the backbone is the GLOSS Core Network (GCN) – a global set of ~300 tide gauge stations that serve as the foundation of the global in situ sea level network. The network is designed to provide evenly distributed sampling of global coastal sea level variation at a variety of time-scales.
DONG Wen, University of hawaii sealevel center (UHSLC)
The data set analyzes the spatial and temporal distribution, impact and loss of typical global flood disasters from 2018 to 2019. In 2018, there were 109 flood disasters in the world, with a death toll of 1995. The total number of people affected was 12.62 million. The direct economic loss was about 4.5 billion US dollars, which was at a low level in the past 30 years. The number of global flood incidents in 2018 was higher in the first half of the year than in the second half of the year, and the frequency of occurrence was higher from May to July. Therefore, based on three typical disaster events such as the hurricane flood in Florence in the United States in 2018, the flooding of the Niger River in Nigeria in 2018, and the Shouguang flood in Shandong Province in 2018, the disaster background, hazard factors, and disaster situation were analyzed. .
JIANG Zijie, JIANG Weiguo, WU Jianjun, ZHOU Hongmin
This data set contains 2018 global forest fire case data for the whole year and 2019, including the forest fire in California in November 2018, the forest fire in Attica, Greece in July 2018, and the forest fire in Shanxi Province in March 2019. Case data. Specific data include: fire intensity data of the monitoring range and data of vegetation index changes before and after the disaster. The data set is mainly used to describe the occurrence, development, impact and recovery of major global forest fire events in the first half of 2018-2019. The data mainly comes from NASA official website and EM-DAT database, it was processed by statistical and spatial analysis methods using EXCEL and ArcGIS tools. The data source is reliable, the processing method is scientific and rigorous, and it can be effectively applied to global (forest fire) disaster case analysis research.
YANG Yuqing, GONG Adu, WU Jianjun, ZHOU Hongmin
The sand drift potential data sets of Central Asia in 2017 is in tif format. It covers five countries in Central Asia, including Uzbekistan, Tajikistan, Kyrgyzstan, Kazakhstan and Turkmenistan. The sand drift potential is absolutely drift potential, that is, the sum of the flux in all directions, regardless of the direction of the potential. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The temporal resolution is month, the spatial resolution is 0.25°, and the time range is 2017. This data set can be used as an important reference data for sand storm disaster assessment.
GAO Xin
Slope data of economic corridors in Silk Road can reflect the degree of steepness of the surface units of the six major economic corridors, the unit is degree (°). The spatial resolution of the data is 0.016 degrees, which is about 1.8km. The longitude range is 12.09°E-180°, and the latitude range is 10.99°S-90°N. The source is derived from the Global Relief Model built by the National Oceanic and Atmospheric Administration of the United States (NOAA). The range is cut by the border of the Silk Road. This data is one of the basic data necessary to assess the risks of natural disasters (including debris flows, landslides, flash floods, etc.) in the six economic corridors. The application frequency will be high and the prospects will be broad.
ZOU Qiang
The research project on the function and mechanism of sand-fixing afforestation of waste lignin from straw pulp and paper making belongs to the national natural science foundation of China "environment and ecological science in western China" major research program, led by wang hanjie, a researcher of the institute of aviation meteorology and chemical protection, air force equipment research institute. The project ran from January 2004 to December 2006 Remittance data of the project: 1. 2005-08-10 - sand lake - jinsha wan test site image (JPG) 2.2006 field picture of fixed sand test (JPG) 3. Meteorological data of ningxia jinshawan meteorological station (TXT text) Observation data including dry bulb temperature, wet bulb temperature, 0, 5, 10, 15, 20cm ground temperature, evaporation and air temperature were observed at 8:00,14:00 and 20:00 on August 13, 2005 4. Growth data of jinshawan community in ningxia (TXT text) The data of crown diameter and height of four samples are included. 5. Soil water data of jinshawan, ningxia (excel) Soil moisture data of 16 samples at depths of 20CM and 12CM in clear water control area and lignin spraying area by 2 hours in the daytime on August 19, 2005. 6. Soil water data of shahu lake in ningxia (excel) On August 10,11, 2005, soil moisture data of various depths of 10CM,12CM and 20CM were obtained 7. Plant growth data of sand fixation community in shahu, ningxia (excel) Plant growth statistics of 5 sample plots: species name,x,y, base, crown, height, number of plants.
WANG Hanjie
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn