The data set contains the variations of water level, area, and volume for ten lakes in Jiangsu Province (Taihu Lake, Hongze Lake, Gaoyou Lake, Luoma Lake, Shijiu Lake, Gehu Lake, Yangcheng Lake, Baima Lake, Shaobo Lake and Dianshan Lake) from 2003 to 2019, which provides important parameters for the study of lake hydrological ecosystem balance in Jiangsu Province in recent years. The water level data of the ten lakes were obtained from altimetry satellites Envisat/RA-2, Cryosat-2, ICESat, and ICESat-2. The water area data were obtained from Landsat TM/OLI images bsed on Modified Normalized Difference Water Index. For the four lakes with complete water level data (Hongze Lake, Gaoyou Lake, Gehu Lake and Taihu Lake), the water volume changes from 2003 to 2019 were estimated according to the water level and area results. Compared with the in-situ water level data, the water level extracted from altimetry data showed significantly consistent (α = 0.05) for all the ten lakes, with the average absolute error of 0.168 m. The data set provides the variations of water level, area, and volume for the ten lakes in Jiangsu Province from 2003 to 2019, which can provide data support for the management and dispatching of water resources in Jiangsu Province.
KE Changqing, CHANG Xiangyu, CAI Yu, XIA Wentao
This data set is the global high accuracy global elevation control point dataset, including the geographic positioning, elevation, acquisition time and other information of each elevation control point. The accuracy of laser footprint elevation extracted from satellite laser altimetry data is affected by many factors, such as atmosphere, payload instrument noise, terrain fluctuation in laser footprint and so on. The dataset extracted from the altimetry observation data of ICESat satellite from 2003 to 2009 through the screening criteria constructed by the evaluation label and ranging error model, in order to provide global high accuracy elevation control points for topographic map or other scientific fields relying on good elevation information. It has been verified that the elevation accuracy of flat (slope<2°), hilly (2°≤slope<6°), and mountain (6°≤slope<25°) areas meet the accuracy requirements of 0.5m, 1.5m, and 3m respectively.
XIE Huan, LI Binbin, TONG Xionghua, TANG Hong, LIU Shijie, JIN Yanmin, WANG Chao, YE Zhen, CHEN Peng, XU Xiong, LIU Sicong, FENG Yongjiu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn