The data from the Digital Mountain Map of China depicts the spatial pattern and complex morphological characteristics of mountains in China from a macro scale, including the mountains’ spatial distribution, classification, morphological elements and area ratio. It is a set of basic data that can be used for mountain zoning, mountain genetic classification and resource environment correlation analysis. Mountains carry great natural resource supply, provide ecological service and regulation functions, and play an important part in eco-civilization construction and socioeconomic development in China. Lately,Prof. Li Ainong of the Institute of Mountain Hazards and Environment, CAS, developed this data set based on the spatial definition of mountains, an a topography adaptive slide window method for the relief amplitude. The data include: (1) Spatial distribution of mountains in China; (2) Mountain classification; (3) Main mountain ranges (with range alignment, relief grade and ridge morphology); (4)Main mountain peaks; (5)Mountain proportion table of the provinces/autonomous regions/municipalities of China; (6) Contour zoning data; (7) General situation of mountain formation; (8)Mountain division and zoning data; (9) List of main mountain peaks. The spatial resolution of the original DEM source is about 90m. And the boundaries of mountains have been revised with multisource remote sensing data, which has good spatial consistency with the relief shading map. The cartographic generalization accuracy of mountain ranges and relevant features is 1:1 000 000. Mountain features in this data set have higher spatial resolution and pertinence, which are available for the zonality of mountain environment and mountain hazards, and the spatial analysis for ecological, production and living spaces in mountain areas, surpporting macro decision-making on mountain areas' development in China. p
NAN Xi , LI Ainong , DENG Wei
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
The multi-scale dataset of environment and element-at-risk for the Qinghai-Tibet Plateau includes geomorphic data, normalized vegetation index data, annual temperature and rainfall data, and disaster bearing value grade data, covering an area of 6.56 million square kilometers. The data set is mainly prepared for disaster and risk assessment. Due to the huge coverage, the geomorphic data adopts 150m spatial resolution and other data adopts 1000m spatial resolution. Geomorphology, vegetation index, temperature and rainfall data are mainly produced by processing open source data, and disaster bearing value grade data are produced by superposition calculation, comprehensively considering population data, night light index, buildings and surface cover types.
TANG Chenxiao
The Cenozoic strata developed within and around the Tibetan Plateau, contain fruitful information on the tectonic evolution, paleoenvironment and paleoclimate changes. It's very significant on revealing the history of the uplift and deformation of the Tibetan Plateau and its relevant effects on the regional and even global environment and climate. This data set contains several well developed sections, which have been identified by the systematic geological survey. Depending on the tools (e.g. GPS, geological compass) in the fieldwork, we have finished the geological measurements and descriptions of these sections as well as the relevant geological maps. It includes a 90-m loess deposit of the Duikang section in the Linxia basin, several fluvial and lacustrine deposits (such as the 1890-m Dayu section in the Lunpola basin, the 300-m Shuanghe section in the Jianchuan basin, the 252-m Caijiachong section in the Qujing basin) and a 932-m saline lacustrine deposit with gypsolyte of the Jiangcheng section in the Simao basin. This data set provides a solid geological foundation for the following researches on stratigraphic chronology, tectonic evolution, paleoenvironment and paleoclimate, and so forth.
FANG Xiaomin , FANG Xiaomin, YAN Maodu, ZHANG Weilin, ZHANG Dawen
The Wuyu Basin is bounded by the Gangdese Mountains to the north and the Yarlung Tsangpo River to the south, and is a representative basin to study the Cenozoic tectonism of the southern Tibet. The sedimentary strata in the Wuyu Basin include the Paleocene-Eocene Linzizong Group volcanics and the Oligocene Rigongla Formation (Fm.) volcanics, the Miocene lacustrine sediments of the Mangxiang Fm. and Laiqing Fm. volcanics, the late Miocene-Pliocene Wuyu Fm., and the Pleistocene Dazi Fm. Five sandstone samples from the Mangxiang Fm., Wuyu Fm. and Dazi Fm. and one modern Wuyu reiver sand sample were collected for detrital zircon U-Pb dating using the LA-ICP-MS method. Detrital zircon U-Pb ages in the Mangxiang Fm. show a large cluster at 45-80 Ma; those in the Wuyu Fm. show a large cluster at 8-15 Ma and a subsidiary cluster at 45-70 Ma; those in the Dazi Fm. show three large clusters at 45-65 Ma, 105-150 Ma and 167-238 Ma; and those in modern Wuyu river show a large cluster at 8-15 Ma and a subsidiary cluster at 45-65 Ma (Figure 1). Late Cretaceous-early Eocene zircons in all samples are consistent with the most prominent stage of magmatism of the Gangdese Mountains; the 8-15 Ma zircons in the Wuyu Fm. and modern Wuyu river are consistent with the magmatism of the Laiqing Fm.; and the Triassic-Jurassic zircons in the Dazi Fm. are consistent with the magmatism of the central Lhasa terrane. The results of detrital zircon U-Pb ages and sedimentary facies analyses in the Wuyu Basin indicate that the southern Tibetan Plateau suffered multi-stage tectonism-magmatism since the India-Asia collision: (1) Paleogene Linzizong Group-Rigongla Fm. volcanics; (2) tectonism-magmatism at ~15 Ma ended the lacustrine sediments of the Mangxiang Fm. and resulted in volcanism of the Laiqing Fm.; (3) tectonism at ~8 Ma resulted in the volcanic rocks of the Laiqing Fm. becoming one of the main provenances for the overlying Wuyu Fm.; (4) the Wuyu Basin formed braided river and received sediments from the central Lhasa terrane to its north at ~2.5 Ma. The geomorphic pattern of the southern Tibet has gradually formed since the Quaternary.
MENG Qingquan MENG Qingquan
The data is 1:4 million geomorphic type data of the Qinghai Tibet Plateau. The geomorphic map can express the results of geomorphic research and is an important method to study geomorphology. It plays an important role in geomorphology and the continuous development of geomorphic research. The data includes two parts. SHP data comes from China's 1:4 million morphological and geomorphic map, and the spatial scope is in China; Grid data is from USGS( https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/ ), the spatial scope extends to the Qinghai Tibet Plateau and adjacent mountainous areas, including some overseas areas. The vector data consists of 1:4 million morphological geomorphic map, which is scanned, registered and vector digitized. During digitization, the accuracy is guaranteed to be within 2 pixels. The grid data is obtained through spatial calibration, accuracy verification and cutting. The detailed data processing process can be seen https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12265 。
YANG Yaping
The Central Asia West Asia economic corridor is dominated by deserts, mountains and plateaus, with an average altitude of about 1000m. The climate is extremely arid, the desert distribution area is large, the ecology is fragile, the dry and hot season lasts for a long time, up to 7 months, and the annual average rainfall is only 150mm at most. There are great differences in natural environment and complex geological conditions in the area. Under the compound driving action of regional differentiated structure, earthquake, meteorology, hydrology and ecology, debris flow and landslide are widely distributed in the corridor. Based on remote sensing images, the landslide and debris flow disasters in China Central Asia West Asia economic corridor are interpreted. Statistics show that 303 landslides and 2159 debris flow disasters are developed in China Central Asia West Asia economic corridor. Debris flows mainly include freeze-thaw debris flow, ice water debris flow and rainstorm debris flow.
ZOU Qiang
1) The work of automatically dividing a wide and complex geospatial area or even a complete watershed into repeatable and geomorphically consistent topographic units is still in the stage of theoretical concept, and there are great challenges in practical operation. Terrain unit is a further subdivision of topography and geomorphology, which can ensure the maximum uniformity of geomorphic features in slope unit and the maximum heterogeneity between different units. It is suitable for geomorphic or hydrological modeling, landslide detection in remote sensing images, landslide sensitivity analysis and geological disaster risk assessment. 2) Slope unit is an important type of topographic unit. Slope unit is defined as the area surrounded by watershed and catchment line. In fact, the area surrounded by watershed and catchment line is often multiple slopes or even a small watershed. Theoretically, each slope unit needs to ensure the maximum internal homogeneity and the maximum heterogeneity between different units. The slope unit is an area with obviously different topographic characteristics from the adjacent area. These topographic characteristics can be based on the characteristics of catchment or drainage boundary, slope and slope direction, such as ridge line, valley line, platform boundary, valley bottom boundary and other geomorphic boundaries. According to the high-precision digital elevation model, the slope unit with appropriate scale and quality can be drawn manually, but the manual drawing method is time-consuming and error prone. The quality of the divided slope unit depends on the subjective experience of experts, which is suitable for small-scale areas and has no wide and universal application value. Aiming at the gap in practical operation in this field, we propose an innovative modeling software system to realize the optimal division of slope units. Automatic division system of slope unit based on confluence analysis and slope direction division v1 0, written in Python programming language, runs and calculates as the grass GIS interpolation module, and realizes the automatic division of slope units in a given digital elevation data and a set of predefined parameters. 4) Based on python programming language, the code is flexible and changeable, which is suitable for scientific personnel with different professional knowledge to make a wide range of customization and personalized customization. In addition, the software can provide high-quality slope unit division results, reflect the main geomorphic characteristics of the region, and provide a based evaluation unit for fine landslide disaster evaluation and prediction. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development.
YANG Zhongkang
1) In mountainous areas, due to the complex topographic and geological background conditions, landslides are very easy to occur triggered by external factors such as rainfall, snow melting, earthquake and human engineering activities, resulting in the loss of life and property and the destruction of the natural environment. In order to meet the safety of project site construction, the rationality of land use planning and the urgent needs of disaster mitigation, it is necessary to carry out regional landslide sensitivity evaluation. When many different evaluation results are obtained by using a variety of different methods, how to effectively combine these results to obtain the optimal prediction is a technical problem that is still not difficult to solve at present. It is still very lack in determining the optimal strategy and operation execution of the optimal method for landslide sensitivity evaluation in a certain area. 2) Using the traditional classical multivariate classification technology, through the evaluation of model results and error quantification, the optimal evaluation model is combined to quickly realize the high-quality evaluation of regional landslide sensitivity. The source code is written based on the R language software platform. The user needs to prepare a local folder separately to read and store the software operation results. The user needs to remember the folder storage path and make corresponding settings in the software source code. 3) The source code designs two different modes to display the operation results of the model. The analysis results are output in the standard format of text and graphic format and the geospatial mode that needs spatial data and is displayed in the standard geographic format. 4) it is suitable for all people interested in landslide risk assessment. The software can be used efficiently by experienced researchers in Colleges and universities, and can also be used by government personnel and public welfare organizations in the field of land and environmental planning and management to obtain landslide sensitivity classification results conveniently, quickly, correctly and reliably. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development
YANG Zhongkang
Two types of seismic waves are used as dynamic inputs, one is synthetic waves, including sine waves and synthetic waves with different transcendence probabilities; the other is natural waves, selecting Wenchuan Wolong waves and Maoxian waves. The sine wave amplitude and frequency are unique, so they can be used to study the influence of ground motion parameters on the dynamic response of slopes; the natural waves are selected from the soil layer waves recorded at Wolong station and bedrock seismic waves recorded at Maoxian station during the Wenchuan earthquake, aiming to investigate the influence of different types of seismic wave inputs on the dynamic response of rock slopes by comparing the dynamic response law of slopes under the action of two types of seismic waves. White noise was performed after each loading to analyze the natural characteristics of the slope. A 10-minute stay after each loading was used to take pictures and observe the damage of the slope.
GUO Mingzhu
Through the investigation of tourist spots, tourist routes and tourist areas at different levels, form photos and video data of tourism resources, tourism services and tourism facilities of scenic spots, scenic spots, corridors and important tourism transportation nodes, tourism villages and tourism towns, record the tourism development status, find problems in tourism development, and form corresponding ideas for the construction of world tourism destinations; The data sources are UAV, tachograph and camera, mobile phone and GPS, and are divided into different folders according to scenic spots and data categories; The data has been checked for many times to ensure its authenticity; This data can provide a traceable basis for the construction of world tourism destinations on the Qinghai Tibet Plateau.
SHI Shanshan
After the debris flow flexible protection system intercepts the debris flow disaster, the UAV tilt photography is carried out on the disaster slope. After the three-dimensional model of the slope is established with the help of terrain reconstruction software such as context capture, the protection process is inversely calculated, and the mechanical response history of each component of the structure is obtained through calculation, so as to obtain the wire rope tension, steel column internal force, system buffer distance The residual protection height of the system, the deformation of energy dissipator and the deformation of steel column provide a reference for the performance evaluation and optimization design of the protection system.
QI Xin
The data set is the watershed scale erosion rate of the eastern Tibet Based on 10Be. The data includes the first author, publication year, longitude and latitude and erosion rate. The data were collected in published journal articles, and the data has significant spatial distribution characteristics, and different research results are consistent with each other. The spatial characteristics of basin-wide erosion rate are always related to river geomorphic characteristics (such as steepness), climate and tectonic activities. Therefore, the systematic data set can provide important data support for the analysis of the main controlling factors of regional erosion rate , making it possible to quantify the contribution of climate and structure to the surface process in the region.
ZHANG Huiping
1) Data content: this data set is the landslide disaster data of Sanjiang Basin in the southeast of Qinghai Tibet Plateau; 2) Data source and processing method: this data set was independently interpreted by Dai Fuchu of Beijing University of technology using Google Earth; This data file is finally formed by remote sensing interpretation - on-site verification - re interpretation - re verification and other methods after 7 systematic interpretation. More than 5000 landslides have been verified on site with high accuracy; 4) This data has broad application prospects for hydropower resources development, traffic engineering construction and geological disaster evaluation in the three river basins in the southeast of Qinghai Tibet Plateau.
DAI Fuchu
Dating data of debris flow and dammed lake sediments in complex mountainous areas from 2019 to 2021. The data collection sites are complex mountainous areas prone to debris flow in the eastern and southern edges of the Qinghai Tibet Plateau. The experimental analysis is mainly completed in the salt lake chemical analysis and testing center of Qinghai Salt Lake Research Institute of Chinese Academy of Sciences and the analysis and testing center of Chengdu Mountain Institute of Chinese Academy of Sciences. The instruments used include RIS ø TL / OSL – Da – 20 automatic luminescence instrument, etc. The age data set of debris flow sediments in typical complex mountainous areas is established, the formation age of debris flow sediments in complex mountainous areas is quantitatively studied, and the ancient debris flow disaster activity history in complex mountainous areas is determined.
HU Guisheng
The hydrological observation data at the downstream of Yigong Zangbu mainly includes the hourly monitoring data of water depth and temperature at the downstream of Yigong Zangbu. The data collection time is 2020. The data source is collected by the hobo water level gauge installed on the bedrock at the downstream of Yigong lake. The hobo water level gauge is a pressure sensing water level gauge, which is collected and stored once an hour. The water depth and water temperature data are the average value per hour. It should be noted that the water depth data obtained from the measurement is pressure data, and the local atmospheric pressure at the measuring point should be deducted when converting to water depth data. The data has reliable quality and high accuracy, and can be used to record the annual change of water level in Yigong Zangbu, and finally achieve the purpose of inversion of runoff process by controlling key river channels.
HOU Weipeng
The surface meteorological data of tianmogou in Bomi county are collected from the meteorological monitoring points arranged in the middle reaches of tianmogou in PALONG Zangbu basin. The data collection time is 2020. The main content of the data includes the observation data of rainfall and temperature in tianmogou. The rainfall data is collected by hobo rain gauge. Hobo rain gauge is a tipping bucket rain gauge. Every 0.2mm rainfall is recorded as an event, and the number of recorded events is output. The number of events multiplied by 0.2mm is the rainfall value; The air temperature is measured by a built-in 10 bit resolution temperature sensor in the data recorder. The acquisition method is to collect and store once every hour, and the hourly average value of air temperature can be obtained. The data is reliable in quality and high in accuracy. It can be used to reflect the real-time changes of rainfall and temperature in Tianmo gully, monitor the critical conditions of debris flow start-up, and predict the possibility of future debris flow events in this area.
HOU Weipeng
The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
The ups and downs of the earth's surface become landforms. This data set is geomorphic data within the Sichuan Tibet traffic corridor area with an accuracy of 90m, and the data format is TIF. The data is digitized from the geomorphic Atlas of the people's Republic of China (1:1 million). The landforms of plains, hills and platforms are classified according to altitude and fluctuation. The accuracy of the data is low, and there are few types of landforms in the study area. The regional combination and vertical differentiation of various landforms are not only closely related to the changes of climate and hydrology and the distribution of soil and organisms, but also have a significant impact on industrial and agricultural production, water conservancy and transportation construction, but also an important factor that must be considered in the evolution and management of ecological environment.
WANG Lixuan
Paleo-shorelines are widely developed in the lakes of the Tibetan Plateau (TP), which record the history of paleo-lake level changes. The development age of the mega-lake represented by the highest paleo-shoreline is controversial. The age of the shoreline or the mega-lake can be obtained by measuring the burial age of the shoreline sand in the sedimentary strata of the paleo-shoreline by using the optical stimulated luminescence (OSL) dating technology. This data includes the OSL ages of the highest paleo-shorelines of three lakes in the northwestern TP. The dating is based on the K-feldspar pIRIR method developed in recent years, which effectively solves the problem that the quartz OSL signal is not suitable for dating in the study area. This data can provide key information for the evolution history of the mega-lakes on the TP.
ZHAO Hui, ZHANG Shuai, SHENG Yongwei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn