This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.
LIU Junguo
This data set records the simulation area of vegetation restoration and reconstruction technology of sandy land (Ningxia / Zhongwei / Shapotou) meteorological elements and three parameter data of soil at different depths from January 2021 to December 2021, and in order to explore the feasibility of high salinity salt water in the Aral Sea for vegetation construction, the project members carried out salt water irrigation and planting Suaeda salsa in saline alkali lands such as No. 2 company, regiment 31, second agricultural division, ganquanpu, Karamay, Luntai and tumushuk in the lower reaches of Tarim River, Xinjiang from 2020 to 2021 To study the phenotypic characteristics of different plants under high salinity saline water irrigation. The collected data include soil physical and chemical properties such as soil water content, electrical conductivity and soil salt, as well as physiological data of salt tolerant plants.
LI Xinrong, HE Mingzhu, ZHAO Zhenyong
This dataset records The experiment of soil water content in the lower reaches of the Tarim River (Karl) was carried out by the members of the Xinjiang salt water Regiment (Karl) from September to September, 2020 In order to study the phenotypic characteristics of different plants under high salinity saline water irrigation, and to explore the feasibility of high salinity saline water for vegetation construction.
LI Xinrong, HE Mingzhu, ZHAO Zhenyong
This dataset subsumes sustainable livestock carrying capacity in 2000, 2010, and 2018 and overgrazing rate in 1980, 1990, 2000, 2010, and 2017 at county level over Qinghai Tibet Plateau. Based on the NPP data simulated by VIP (vehicle interface process), an eco hydrological model with independent intellectual property of the institute of geographic sciences and nature resources research(IGSNRR), Chinese academy of Sciences(CAS), the grass yield data (1km resolution) is obtained. Grass yield is then calculated at county level, and corresponding sustainable livestock carring capacity is calculated according to the sustainable livestock capacity calculation standard of China(NY / T 635-2015). Overgrazing rate is calculated based on actual livestock carring capacity at county level.The dataset will provide reference for grassland restoration, management and utilization strategies.
MO Xingguo
The data include the datasets of temporal changes in water level, water storage and area of the Aral sea (1911−2017), the inter-decadal change of ecosystem structure (NDVI—Normalized Difference Vegetation Index) of the Aral sea (1977−2017), and dust intensity (EDI—Enhanced Dust Index) in the Aral sea (2000−2018). Using data fusion technology in the construction of a lake basin terrain, terrain based on remote sensing monitoring and field investigation, on the basis of the analysis of the Aral sea terrain data, generalized analyses the water - area - the changes of water content, the formation of water - water - area of temporal variation data set, can clearly reflect the Aral sea water change process and the present situation, provide basic data for the Aral sea environmental change research. The NDVI was used to reflect the vegetation ecology in the receding area. Landsat satellite data, with a spatial resolution of 30 m, was used for NDVI analysis in 1977, 1987, 1997, 2007, and 2017. Based on ENVI and GIS software, remote sensing image fusion, index calculation, and water extraction were used to determine the lake surface and lakeshore line of the Aral sea. The lakeside line in the south of the Aral sea is taken as the starting point, and it extends for 3 km to the receding area. The variation characteristics of vegetation NDVI in the lakeside zone within 0-3 km are obtained to reflect the structural changes of the lakeside ecosystem. EDI was extracted from MODIS image data. This index is introduced into the dust optical density to enhance the dust information to form the enhanced dust index. Based on remote sensing monitoring, the use of EDI, established the Aral sea area-EDI index curve, the curve as the construction of the Aral sea dry lake bed dust release and meteorological factors, quantitative relationship laid the foundation of soil physical and chemical properties, in order to determine the control of sand/salt dust in the reasonable area of the lake.
LUO Yi, ZHENG Xinjun, HUANG Yue, JILILI Abuduwaili
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn