This data includes bacterial 16S ribosomal RNA gene sequence data from 25 lakes in the middle of the Qinghai Tibet Plateau. The sample was collected from July to August 2015, and the surface water was sampled three times with a 2.5 liter sampler. The samples were immediately taken back to the Ecological Laboratory of the Beijing Qinghai Tibet Plateau Research Institute, and the salinity gradient of the salt lake was 0.14~118.07 g/L. This data is the result of amplification sequencing. Concentrate the lake water to 0.22 at 0.6 atm filtration pressure μ The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGCGGTAA-3') and 909r (5 '- GGACTACHVGGGTWTCTAAT-3'). The Illumina MiSeq PE250 sequencer was used for end-to-end sequencing. The original data was analyzed by Mothur software. The sequence was compared with the Silva128 database and divided into operation classification units (OTUs) with 97% homology. This data can be used to analyze the microbial diversity of lakes in the Qinghai Tibet Plateau.
KONG Weidong
This data includes the distribution data of soil bacteria in Namco region of the Qinghai Tibet Plateau, which can be used to explore the seasonal impact of fencing and grazing on soil microorganisms in Namco region. The sample was collected from May to September 2015, and the soil samples were stored in ice bags and transported back to the Ecological Laboratory of Beijing Institute of Qinghai Tibet Plateau Research; This data is the result of amplification sequencing, using MoBio Powersoil ™ Soil DNA was extracted with DNA isolation kit, and the primers were 515F (5 '- GTGCCAAGCGCCGGTAA-3') and 806R (5'GGACTACNVGGGTWTCTAAT-3 '). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and then the similarity between sequences is calculated, and the sequences with a similarity of more than 97% are clustered into an OTU. The Greengenes reference library is used for sequence alignment to remove the sequence that only appears once in the database. The soil moisture content and soil temperature were measured by a soil hygrometer, and the soil pH was measured by a pH meter (Sartorius PB-10, Germany). The soil nitrate nitrogen (NO3 −) and ammonium nitrogen (NH4+) concentrations were extracted with 2 M KCl (soil/solution, 1:5), and analyzed with a Smartchem200 discrete automatic analyzer. This data set is of great significance to the study of soil microbial diversity in arid and semi-arid grasslands.
KONG Weidong
Data on soil bacterial diversity of grassland in Qinghai Tibet Plateau. The samples were collected from July to August 2017, including 120 samples of alpine meadow, typical grassland and desert grassland. The soil surface samples were collected and stored in ice bags, and then transported back to the ecological laboratory of the Beijing Qinghai Tibet Plateau Research Institute. The soil DNA was extracted by MO BIO PowerSoil DNA kit. The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGGTAA-3') and 806R (5 ´ GGACTACNVGGGTWTCTAAT-3 ´). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and the sequence classification is based on the Silva128 database. Sequences with a similarity of more than 97% are clustered into an operation classification unit (OTU). This data systematically compares the bacterial diversity of soil microorganisms in the Qinghai Tibet Plateau transect, which is of great significance to the study of the distribution of microorganisms in the Qinghai Tibet Plateau.
KONG Weidong
The data set of bacterial post-treatment products and conventional water quality parameters of some lakes in the third pole in 2015 collected the bacterial analysis results and conventional water quality parameters of some lakes in the Qinghai Tibet Plateau during 2015. Through sorting, summarizing and summarizing, the bacterial post-treatment products of some lakes in the third pole in 2015 are obtained. The data format is excel, which is convenient for users to view. The samples were collected by Mr. Ji mukan from July 1 to July 15, 2015, including 28 Lakes (bamuco, baimanamuco, bangoso (Salt Lake), Bangong Cuo, bengcuo, bieruozhao, cuo'e (Shenza), cuo'e (Naqu), dawaco, dangqiong Cuo, dangjayong Cuo, Dongcuo, eyaco, gongzhucuo, guogencuo, jiarehbu Cuo, mabongyong Cuo, Namuco, Nier CuO (Salt Lake), Norma Cuo, Peng yancuo (Salt Lake), Peng Cuo, gun Yong Cuo, Se lincuo, Wu rucuo, Wu Ma Cuo, Zha RI Nan Mu Cuo, Zha Xi CuO), a total of 138 samples. The extraction method of bacterial DNA in lake water is as follows: the lake water is filtered onto a 0.45 membrane, and then DNA is extracted by Mo bio powerOil DNA kit. The 16S rRNA gene fragment amplification primers were 515f (5'-gtgccagcmgcgcggtaa-3') and 909r (5'-ggactachvggtwtctaat-3'). The sequencing method was Illumina miseq PE250. The original data were analyzed by mothur software, including quality filtering and chimera removal. The sequence classification was based on the silva109 database. The archaeal, eukaryotic and unknown source sequences had been removed. OTU classifies with 97% similarity and then removes sequences that appear only once in the database. Conventional water quality detection parameters include dissolved oxygen, conductivity, total dissolved solids, salinity, redox potential, nonvolatile organic carbon, total nitrogen, etc. The dissolved oxygen is determined by electrode polarography; Conductivity meter is used for conductivity; Salinity is measured by a salinity meter; TDS tester is used for total dissolved solids; ORP online analyzer was used for redox potential; TOC analyzer is used for non-volatile organic carbon; The water quality parameters of total nitrogen were obtained by Spectrophotometry for reference.
YE Aizhong
Based on the distribution locations of the Qinghai toad-headed lizard (Phrynocephalus vlangalii) collected by field investigation and literature investigation, combined with five climate factors from WorldClim database, the current (1960-1990) and future (2061-2080) climate data were input into the trained species distribution model to predict the current and future suitable habitats. The prediction results shows that the lizard will lose a lot of original habitats under the climate change, and the protection measures for the lizard species should focus on the eastern margin of Qinghai-Tibet Plateau, the northern and eastern parts of Qaidam Basin. The model also predicts that after the climate change, new suitable habitats will appear in areas that were not suitable for the Qinghai toad-headed lizard. However, due to the very limited diffusion ability of reptiles (the maximum annual diffusion distance recorded in the literature is less than 500m), the newly emerging suitable habitats may not be used by the Qinghai toad-headed lizard. Meanwhile, based on the physiological, life history, behavior and morphological data of three altitudinal populations of the Qinghai toad-headed lizard collected by field work, and combined with microclimate data, the physiological consequences of climate change on the Qinghai toad-headed lizard in the current suitable distribution area were predicted by using the mechanism niche model. The prediction results of the model show that, whether in the SSP245 or SSP585 climate change scenarios, the activity time of the lizard will increase in most areas (> 93%) of the current suitable distribution area, and the thermal safety threshold will decrease in all places of the current suitable distribution area. The increase of activity time of high-altitude populations is less than that of low-altitude populations, but the decrease of thermal safety threshold is greater than that of low-altitude populations. The results reveal that climate change may have a greater impact on lizard populations in high altitude areas.
ZENG Zhigao
1) Data content: species list and distribution data of sand lizard and hemp lizard in the Qaidam Basin, including class, order, family Chinese name, family Latin name, genus Chinese name, genus Latin name, species Latin name, species Chinese name, country, province, city, county, town and township, etc; 2) Data source and processing method: Based on the field investigation of amphibians and reptiles in the arid desert area of the Qaidam Basin from 2007 to 2021, the species composition and distribution range of toad-headed agamas and racerunners in this area are recorded; 3) Data quality description: the investigation, collection and identification personnel of samples are professionals. The collection information of samples is checked to ensure the quality of distribution data; 4) Data application achievements and prospects: comprehensive analysis of species diversity and distribution data of toad-headed agamas and racerunners in the Qaidam Basin can provide important data for biodiversity cataloguing in northwest desert region and arid Central Asia, and provide scientific basis for assessing biodiversity situation and formulating conservation strategies.
GUO Xianguang
This data set includes two infrared cameras and environmental parameter data sets of three terrestrial vertebrates deployed in Qilian Mountain reserve. The equipment is deployed near Sidalong in Qilian Mountain reserve, with a time span of (2020.8-2021.10). Due to equipment maintenance and insufficient illumination, some data are discontinuous, but the data of the two equipment can complement each other and reconstruct all the information of observation points in Qilian Mountain reserve from August 2020 to October 2021. One of the two devices is equipped with an infrared camera, which collects 4994 photos, which can be matched with the above sensor photos, or the ecological factor information before and after taking photos. 1. Wild animals and temperature, humidity, light, pressure and network signal strength information in Qilian Mountain reserve. The acquisition interval is once every half an hour 2. Data source: "development of terrestrial vertebrate monitoring equipment", 2016yfc0500104, completed by: Institute of zoology, Chinese Academy of Sciences, raw data, unprocessed 3. The sensor data acquisition interval is every half an hour. The temperature accuracy is plus or minus 0.1 degrees and the humidity accuracy is plus or minus 0.5%. The photo data is divided into trigger and timing. The trigger data is generally triggered by wild animals in the field of vision of the infrared camera; the timing photo data is dynamically adjusted according to the battery power, and the acquisition interval is between 1-12 hours. 4. This data can be used to record the ambient temperature in the reserve. Combined with the infrared camera data, it can be used to analyze the activity rhythm of wild animals, coexistence analysis and distribution limiting factors.
QIAO Huijie
The data includes: zooplankton species list; zooplankton density; microscopy; high-throughput sequencing; complete data; constructing an original data set for lakes on the Qinghai-Tibet Plateau. Zooplankton is an indispensable link in lake water ecological investigation, and it is a link between the system The location of the food web is an important carrier for the material circulation and energy flow of the food web. The systematic investigation and study of the composition and biodiversity of the zooplankton in the lakes on the Qinghai-Tibet Plateau is particularly important for understanding the stability and resilience of the lake ecosystem on the Qinghai-Tibet Plateau. In addition, Zooplankton are very sensitive to environmental changes, and changes in their structure and functional groups can indicate the intensity and magnitude of environmental pressure.
LI Yun
Dataset of biodiversity survey in the urbanized area of Tibetan Plateau mainly includes the survey datasets of waterbird diversity and vegetation diversity in the Qinghai Lake Basin. From July to August in 2020, 24 waterbird observation sites were set up around Qinghai Lake, such as sites located in Ganzi River wetland and Buha River estuary, etc., and the species and population of waterbirds were recorded by telescope observations and drones. Besides, 28 plots (1m×1m) were selected based on the local vegetation types, and elements of vegetation types, frequency and biomass were recorded. Our dataset will support the study of optimizing the ecological security barrier system in the key urbanized areas of the Tibetan Plateau.
CHEN Kelong, CHEN Zhirong
This data includes the soil microbial composition data in permafrost of different ages in Barrow area of the Arctic. It can be used to explore the response of soil microorganisms to the thawing in permafrost of different ages. This data is generated by high through-put sequencing using the earth microbiome project primers are 515f – 806r. The region amplified is the V4 hypervariable region, and the sequencing platform is Illumina hiseq PE250; This data is used in the articles published in cryosphere, Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020https://doi.org/10.5194/tc-14-3907-2020 . This data can also be used for the comparative analysis of soil microorganisms across the three poles.
KONG Weidong
The global land surface characteristic parameter (LAI) product was used with a spatial resolution of 5 km. The product uses generalized regression neural network method to retrieve Lai from AVHRR surface reflectance data. In this study, 12 issues of Lai data products from June to August of each year in five Central Asian countries, Mongolia and Northern China from 1981 to 2017 were downloaded from the national science and technology infrastructure platform National Earth System Science Data Center. These images are cropped by ArcGIS software, and the maximum value is calculated to obtain the spatiotemporal data set of the largest Lai. Among them, five Central Asian countries include Turkmenistan, Kyrgyzstan, Kazakhstan, Tajikistan and Uzbekistan; northern China refers to the area north of the Yangtze River in China.
ZHANG Na
The global land surface characteristic parameter (LAI) product was used with a spatial resolution of 5 km. The product uses generalized regression neural network method to retrieve Lai from AVHRR surface reflectance data. In this study, 12 issues of Lai data products from June to August of each year in five Central Asian countries, Mongolia and Northern China from 1981 to 2017 were downloaded from the national science and technology infrastructure platform National Earth System Science Data Center. These images are cropped by ArcGIS software, and the maximum value is calculated to obtain the spatiotemporal data set of the largest Lai. Among them, five Central Asian countries include Turkmenistan, Kyrgyzstan, Kazakhstan, Tajikistan and Uzbekistan; northern China refers to the area north of the Yangtze River in China.
ZHANG Na
This data is the hydrological data of kuzhan hydrological station in the middle reaches of the Xier river. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 2, 2019 to December 5, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m) Site location: 40 ° 17 ′ 38 ″ n, 69 ° 40 ′ 18 ″ e, 320m
ZHANG Na
The global land surface characteristic parameter (LAI) product was used with a spatial resolution of 5 km. The product uses generalized regression neural network method to retrieve Lai from AVHRR surface reflectance data. In this study, 12 issues of Lai data products from June to August of each year in five Central Asian countries, Mongolia and Northern China from 1981 to 2017 were downloaded from the national science and technology infrastructure platform National Earth System Science Data Center. These images are cropped by ArcGIS software, and the maximum value is calculated to obtain the spatiotemporal data set of the largest Lai. Among them, five Central Asian countries include Turkmenistan, Kyrgyzstan, Kazakhstan, Tajikistan and Uzbekistan; northern China refers to the area north of the Yangtze River in China.
ZHANG Na
1) Data content: species list and distribution data of Phrynocephalus and Eremais in Tarim Basin, including class, order, family, genus, species, and detailed distribution information including country, province, city and county; 2) Data source and processing method: Based on the field survey of amphibians and reptiles in Tarim Basin from 2008 to 2020, and recording the species composition and distribution range of Phrynocephalus and Eremias in this area; 3) Data quality description: the investigation, collection and identification of samples are all conducted by professionals, and the collection of samples information are checked to ensure the quality of distribution data; 4) Data application results and prospects: Through comprehensive analysis of the dataset, the list of species diversity and distribution can provide important data for biodiversity cataloguing in arid central Asia, and provide scientific basis for assessing biodiversity pattern and formulating conservation strategies.
GUO Xianguang
In order to analyze how and when vines entered the Qinghai Tibet Plateau, and to explore the relationship between the spread and domestication of vines on the Qinghai Tibet Plateau and the plateau settlement and ancient Silk exchanges of early human activities, the research team conducted genome sequencing and de sequencing of the whole genome of self bred F1 varieties of Brassica rapa in Nangqian County of Qinghai Province in June 2018 The size of the assembled genome was 409.69 MB and contig N50 was 1.21 MB. This result can provide a genetic basis for studying the relationship between plant dispersal and human activities. At the same time, this study will help to reveal the effects of artificial domestication and human selection on the genetic differentiation of the plant and the adaptive mechanism of the plant to the plateau ecological environment.
DUAN Yuanwen
Based on the high-quality genomic sequence analysis, the high-quality genome sequences can be obtained. Therefore, through this technology, the project team divides the sequences in the genome sequence sketch into groups that are consistent with the chromosome number of the species, and determines the order and orientation of all sequences in each group. After that, we can combine the reference vines genome, transcriptome assembly sequence (EST sequence), related species and genetic map data The accuracy of grouping and the sequence and direction between sequences were evaluated.
DUAN Yuanwen
Based on the high-quality genomic sequence analysis, the high-quality genome sequences can be obtained. Therefore, through this technology, the project team divides the sequences in the genome sequence sketch into groups that are consistent with the chromosome number of the species, and determines the order and orientation of all sequences in each group. After that, we can combine the reference vines genome, transcriptome assembly sequence (EST sequence), related species and genetic map data The accuracy of grouping and the sequence and direction between sequences were evaluated.
DUAN Yuanwen
The data set includes the spatial distribution of grass yield in the Qinghai-Tibetan Plateau in 1980, 1990, 2000, 2010, and 2017. The gross primary productivity (GPP) of grassland in the Qinghai-Tibetan Plateau was simulated based on the ecological hydrological dynamic model VIP (vegetation interface process) with independent intellectual property of Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences. The net primary productivity (NPP) was estimated by empirical coefficient, and converted it into dry matter, and then the hay yield was estimated by root-shoot ratio. The spatial resolution is 1km. The data set will provide the basis for grassland resource management, development, utilization and the formulation of the strategy of "grass for livestock".
MO Xingguo
This dataset subsumes sustainable livestock carrying capacity in 2000, 2010, and 2018 and overgrazing rate in 1980, 1990, 2000, 2010, and 2017 at county level over Qinghai Tibet Plateau. Based on the NPP data simulated by VIP (vehicle interface process), an eco hydrological model with independent intellectual property of the institute of geographic sciences and nature resources research(IGSNRR), Chinese academy of Sciences(CAS), the grass yield data (1km resolution) is obtained. Grass yield is then calculated at county level, and corresponding sustainable livestock carring capacity is calculated according to the sustainable livestock capacity calculation standard of China(NY / T 635-2015). Overgrazing rate is calculated based on actual livestock carring capacity at county level.The dataset will provide reference for grassland restoration, management and utilization strategies.
MO Xingguo
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn