This dataset contains the monthly/yearly surface shortwave band albedo, fraction of absorbed photosynthetically active radiation (fPAR), leaf area index (LAI), vegetation continuous fields (tree cover and non-tree vegetation cover, VCF), land surface temperature (LST), net radiation (RN), evapotranspiration (ET), aboveground autotrophic respiration (RA-ag), belowground autotrophic respiration (RA-bg), gross primary production (GPP) and net primary production (NPP) in China from 2001 to 2018. The spatial resolution are 0.1 degree. Moreover, the dataset also includes these 11 ecosystem variables under climate-driven scenario (i.e., under no human disturbance). So, it can show the relative influences of climate change and human activities on land ecosystem in China during the 21st century.
CHEN Yongzhe, FENG Xiaoming, TIAN Hanqin, WU Xutong, GAO Zhen, FENG Yu, PIAO Shilong, LV Nan, PAN Naiqing, FU Bojie
Land surface temperature (LST) is a key parameter in the study of surface energy balance. It is widely used in the fields of meteorology, climate, hydrology, agriculture and ecology. As an important means to obtain global and regional scale LST information, satellite (thermal infrared) remote sensing is vulnerable to the influence of cloud cover and other atmospheric conditions, resulting in temporal and spatial discontinuity of LST remote sensing products, which greatly limits the application of LST remote sensing products in related research fields. The preparation of this data set is based on the empirical orthogonal function interpolation method, using Terra / Aqua MODIS surface temperature products to reconstruct the lst under ideal clear sky conditions, and then using the cumulative distribution function matching method to fuse era5 land reanalysis data to obtain the lst under all-weather conditions. This method makes full use of the spatio-temporal information of the original MODIS remote sensing products and the cloud impact information in the reanalysis data, alleviates the impact of cloud cover on LST estimation, and finally reconstructs the high-quality global 0.05 ° spatio-temporal continuous ideal clear sky and all-weather LST data set. This data set not only realizes the seamless coverage of space-time, but also has good verification accuracy. The reconstructed ideal clear sky LST data in the experimental areas of 17 land cover types in the world, the average correlation coefficient (R) is 0.971, the bias (bias) is -0.001 K to 0.049 K, and the root mean square error (RMSE) is 1.436 K to 2.688 K. The verification results of the reconstructed all-weather LST data and the measured data of ground stations: the average R is 0.895, the bias is 0.025 K to 2.599 K, and the RMSE is 4.503 K to 7.299 K. The time resolution of this data set is 4 times a day, the spatial resolution is 0.05 °, the time span is 2002-2020, and the spatial range covers the world.
ZHAO Tianjie, YU Pei
The global monthly all-sky land surface temperature (2000-2020) is produced by the method from Chen et al. 2017 JHM.
CHEN Xuelong, BOB Su, MA Yaoming
Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote sensing technology has become an important means of quickly obtaining ground temperature over large areas. However, there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60% of the global surface every day. This article presents a unique LST dataset with a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated LST error, and the data performance is then further improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground observation data shows that the root mean square error (RMSE) ranges from 1.24 to 1.58 K, the mean absolute error (MAE) varies from 1.23 to 1.37 K and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1K (R>0:71, P<0:05), and a strong negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high-temperature and drought-monitoring studies. More detail please refer to Zhao et al (2020). doi.org/10.5281/zenodo.3528024
MAO Kebiao
The Land Surface Temperature in China dataset contains land surface temperature data for China (about 9.6 million square kilometers of land) during the period of 2003-2017, in Celsius, in monthly temporal and 5600 m spatial resolution. It is produced by combing MODIS daily data(MOD11C1 and MYD11C1), monthly data(MOD11C3 and MYD11C3) and meteorological station data to reconstruct real LST under cloud coverage in monthly LST images, and then a regression analysis model is constructed to further improve accuracy in six natural subregions with different climatic conditions.
MAO Kebiao
Land surface temperature is a critical parameter in land surface energy balance. This dataset provides the monthly land surface temperature of UAV remote sensing for typical ground stations in the middle reaches of Heihe River basin from July to September in 2019. The land surface temperature retrieval algorithm is an improved single-channel algorithm, which was applied to the land surface brightness temperature data obtained by the UAV thermal infrared remote sensing sensor, and finally the land surface temperature data with a spatial resolution of 0.4m was obtained.
ZHOU Ji, LIU Shaomin, WANG Ziwei
This dataset is land surface phenology estimated from 16 days composite MODIS NDVI product (MOD13Q1 collection6) in the Three-River-Source National Park from 2001 to 2020. The spatial resolution is 250m. The variables include Start of Season (SOS) and End of Season (EOS). Two phenology estimating methods were used to MOD13Q1, polynomial fitting based threshold method and double logistic function based inflection method. There are 4 folders in the dataset. CJYYQ_phen is data folder for source region of the Yangtze River in the national park. HHYYQ_phen is data folder for source region of Yellow River in the national park. LCJYYQ_phen is data folder for source region of Lancang River in the national park. SJY_phen is data folder for the whole Three-River-Source region. Data format is geotif. Arcmap or Python+GDAL are recommended to open and process the data.
WANG Xufeng
The data set analyzes the spatial and temporal distribution, impact and loss of typical global flood disasters from 2018 to 2019. In 2018, there were 109 flood disasters in the world, with a death toll of 1995. The total number of people affected was 12.62 million. The direct economic loss was about 4.5 billion US dollars, which was at a low level in the past 30 years. The number of global flood incidents in 2018 was higher in the first half of the year than in the second half of the year, and the frequency of occurrence was higher from May to July. Therefore, based on three typical disaster events such as the hurricane flood in Florence in the United States in 2018, the flooding of the Niger River in Nigeria in 2018, and the Shouguang flood in Shandong Province in 2018, the disaster background, hazard factors, and disaster situation were analyzed. .
JIANG Zijie, JIANG Weiguo, WU Jianjun, ZHOU Hongmin
Daily and Monthly evapotranspiration (5km x 5km spatial resolution) for global land area was derived from satellite data and a surface energy balance method (EB). The global 5 km daily and monthly ET dataset is produced with the revised SEBS algorithm in Chen et al. 2019 JGR and Chen et al. 2013 (JAMC). For how to obtain seamless daily evaporation data by thermal infrared, please refer to Chen et al. 2021 JGR. This paper also compares different evaporation products. The results show that this product is significantly better than Landflux, GLEAM, MOD16, GLDAS and ERA-Interim products in irrigation area. The downscaling of reanalysis forcing data is detailed in this paper. MODIS LST, NDVI, Global forest height, GlobAlbedo, GLASS LAI have been used in this ET calculation. The ET dataset will be updated to near-present with the availability of input dataset. The global 5 km sensible heat flux, net radiation, latent heat flux will be open with the email contact with Dr. Xuelong Chen. Daily ET File name: 20001201-ET-V1.mat, 2000-year, 12-month,01-day, ET-Evapotranspiration, V1-version 1;unit: mm/day (unit8 need transfer to single or double and should be divided by 10);data type: unit8 was used to save the disk space, 255 is used for ocean and water body pixels. Monthly ET File name: ETm200012-ET-V1.mat, 2000-year, 12-month, ET-Evapotranspiration, V1-version 1;unit: mm/month (int16 need transfer to single or double and should be divided by 10);data type: int16 was used to save the disk space, 0 is used for ocean and water body pixels. The daily ET dataset is produced with a similar method and satellite data as in Chen, X., et al., 2014: Development of a 10 year (2001–2010) 0.1° dataset of land-surface energy balance for mainland China, Atmos. Chem. Phys., 14, 13097–13117, doi:10.5194/acp-14-13097-2014. The calculation of roughness length and kB_1 for global land were updated by the method in Chen, X., et al, 2019, A Column Canopy‐Air Turbulent Diffusion Method for Different Canopy Structures, Journal of Geophysical Research: Atmospheres, 2019.01.15, 124. Most of the satellite input data were from MODIS. Meteorological data was from ERA-Interim. Global canopy height information was derived from GLAS and MODIS NDVI. The daily ET has a mean bias (MB) of 0.04 mm/day, RMSE is 1.56 (±0.25) mm/day.
CHEN Xuelong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn