The considerable amount of solid clastic material in the Yarlung Tsangpo River Basin (YTRB)) is one of the important components in recording the uplift and denudation history of the Tibet Plateau. Different types of unconsolidated sediments directly reflect the differential transport of solid clastic material. Revealing its spatial distribution and total accumulation plays an important value in the uplift and denudation process of the Tibet Plateau. The dataset includes three subsets: the type and spatial distribution of unconsolidated sediments in theYTRB, the thickness spatial distribution, and the quantification of total deposition. Taking remote sensing interpretation and geological mapping as the main technical method, the classification and spatial distribution characteristics of unconsolidated sediments in the whole YTRB (16 composite sub-basins) were comprehensively clarified for the first time. Based on the field measurement of sediment thickness, the total accumulation was preliminarily estimated. A massive amount of sediment is an important material source of landslide, debris flow and flood disasters in the basin. Finding out its spatial distribution and total amount accumulation not only has theoretical significance for revealing the key information recorded in the process of sediment source to sink, such as surface environmental change, regional tectonic movement, climate change and biogeochemical cycle, but also has important application value for plateau ecological environment monitoring and protection, flooding disaster warning and prevention, major basic engineering construction, and soil and water conservation.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo, HU Taiyu, ZHANG Chenjin
Seismic anisotropy imposes first-order constraints on the strain history of crust and upper mantle rocks. In this study, we analyze the mantle seismic anisotropy of the Western Canada Sedimentary Basin using a new shear wave spitting data set consisting of 1,333 teleseismic arrivals from 82 seismic stations. The resulting 332 high-quality measurements yield a regional mean apparent splitting time (i.e., the magnitude of anisotropy) of 1.10.3s and an average fast orientation (i.e., the direction of anisotropy) of 54.6 degrees 17.2 degrees, which favor a two-layer anisotropic model based on the 90 degrees back azimuthal periodicity in both parameters. The northeast trending fast orientations dominate the lower layer at lithospheric depths and are approximately parallel to the present-day absolute plate motions (APMs; i.e., <35 degrees) due to the active asthenospheric flow. On the other hand, deviations from the APMs along the Canadian Rocky Mountain foothills could reflect disrupted mantle flow surrounding a southwestward migrating cratonic lithosphere. Also revealed are two elongated upper-layer anisotropic anomalies in the lithosphere that are spatially correlated with Moho depths. Their characteristics suggest frozen-in anisotropy imprinted along two convergent boundaries: (1) the Paleoproterozoic Snowbird Tectonic Zone that separates northeast (north) from northwest (south) fast directions and (2) the foothills of the Rocky Mountains that exhibit northeast trending orientations consistent with those of the APMs, maximum crustal stress, and electromagnetic anisotropy. Compressions associated with the Cordilleran orogenesis could be responsible for the spatial changes in the shear wave anisotropy from the foothills to the cratonic interior.
WU Lei
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area on May 25, 2008. Observation items included: (1) the soil temperature in L1, L2, L3, L4, L5, L6 and L7; (2) roughness measured by the roughness grid board and collected by the digital camera. Files with "result" field were processed data, in which the first row was RMS height (cm; one value), the second row was distance (cm), and the third row was correlation function (cm; changed into correlation length when it is 1/e). (3) GPR and TDR data. Five files were included, roughness photos and preprocessed data, the soil temperature, coordinates of quadrates and sampling lines, GPR and microwave radiometer data. All were archived as Excel and .txt files. Those provide reliable ground data for development and validation of soil moisture and freeze/thaw algorithms from active remote sensing approaches.
BAI Yunjie, CAO Yongpan, CHE Tao, DU Ziqiang, HAO Xiaohua, WANG Zhixia, WU Yueru, CHAI Yuan, CHANG Sheng, QIAN Yonggang, SUN Xiaoqing, WANG Jindi, YAO Dongping, ZHAO Shaojie, ZHENG Yue, ZHAO Yingshi, LI Xiaoyu, PATRICK Klenk, HUANG Bo, LI Shihua, LUO Zhen
The dataset of airborne L-band microwave radiometer and thermal imager mission was obtained in the Binggou-A'rou flight zone in the afternoon of Apr. 1, 2008. The frequency of L bands was 1.4 GHz with back sight of 35 degree and dual polarization (H&V) was acquired. The plane took off at Zhangye airport at 12:48 (BJT) and landed at 16:35 along the scheduled lines at the altitude about 5000m and speed about 260km/hr.. The raw data include microwave radiometer (L) data, thermal imager data (7.5-13 um; FOV: 24×18º) and GPS data; the first were instantaneous non-imaging observation recorded in text, which could be converted into brightness temperatures according to the caliberation coefficients (filed with raw data together), and the third are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. L band resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height). The thermal imager was 320*240 pixels and with FOV of 24×18º. The thermal imager data were stored in binary format with a text header file. The recorded value was brightness temperature at sensor with scale and gain parameter recorded in the header file. And the thermal images were not geometrically corrected because there were gaps between sequential images.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, XIAO Qing, Liu Qiang
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in No. 2 and 3 quadrates of the A'rou foci experimental area on Jun. 23, 2008. Observation items included: (1) quadrates investigation including GPS by GARMIN GPS 76, plant species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, phenology by manual work, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the chlorophyll content by SPAD 502. Data were archived in Excel format. (2) roughness by the self-made roughness board and the camera. The processed data were archived as .txt files. (3) BRDF by ASD FieldSpec (350~2 500 nm), with 20% reference board and the observation platform made by Beijing Normal University. The processed reflectance and transmittivity were archived as .txt files. (4) LAI of stellera and pasture by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in Excel). For more details, see Readme file. Five files were included, spectrum in No.2 quadrate, multiangle observations in No.2 and 3 quadrates, roughness photos in No.2 and 3 quadrates, the fisheye camera observations, and the No.2 and 3 quadrates investigation.
CAO Yongpan, DING Songchuang, HAO Xiaohua, DONG Jian, Qu Yonghua, YU Yingjie
The dateset of the ground-based RPG-8CH-DP microwave radiometer observations was obtained in the Biandukou foci experimental area from Mar. 14 to 17, 2008. Observation items included the brightness temperature by the ground-based microwave radiometer (18.7GHz and 36.5GHz), the soil temperature by the thermal resistor, the gravimetric soil moisture by the microwave drying method, and the surface roughness by the grid board. The wheat stubble land (38°15'44.13"N, 100°55'35.34"E) was chosen for continuous observations from 11:00 to 24:00 on Mar. 14, with the incidence 20°-70° and the step length 5°. The rape stubble land (38°15'23.17"N, 100°58'37.84"E) was chosen for continuous observations from 10:00 to 21:30 on Mar. 16, with the incidence 20°-70° and the step length 5°. The deep plowed land (38°18'8.28"N, 101° 3'27.22"E) was chosen for short time observations from 17:26 to 19:20 on Mar. 17, with the azimuth angle 240°-300° and the step length 10°, the incidence 40°-70° and the step length 5°. The brightness temperature was archived as .BRT and .txt files (the ASCII format). Each row in .txt was listed by year, month, date, hour, minute, second, 6.925GHz (h), 6.925GHz (v), 10.65GHz (h), 10.65GHz (v) , 18.7GHz (h), 18.7GHz (v), 36.5GHz (h), 36.5GHz (v), the elevation angle, and the azimuth angle. Values for 6.925GHz and 10.65GHz were zero due to malfunction. The roughness data were obtained by the grid board and the camera and the RMS height (cm) and correlation length (cm) were also calculated and archived, which could be opened by Notepad or Microsoft Office Word. Those provide reliable reference for the roughness of the same land cover type. The gravimetric soil moisture (soil samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The file can be opened by Microsoft Office Word. The shallow layer soil moisture was measured by hydra prob from 12:00 to 17:00 on 14 and by the Hydra probe (straight downward for 0-5cm) and HH2 (level into the soil surface) on 16. The surface temperature was measured by the thermal resistor. The file can be opened by Microsoft Office Word. Four data files were included, the brightness temperature, the surface temperature, the soil moisture and the surface roughness.
CHANG Sheng, LIANG Xingtao, PAN Jinmei, PENG Danqing, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, YIN Xiaojun, ZHANG Zhiyu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn