The Wuyu Basin is bounded by the Gangdese Mountains to the north and the Yarlung Tsangpo River to the south, and is a representative basin to study the Cenozoic tectonism of the southern Tibet. The sedimentary strata in the Wuyu Basin include the Paleocene-Eocene Linzizong Group volcanics and the Oligocene Rigongla Formation (Fm.) volcanics, the Miocene lacustrine sediments of the Mangxiang Fm. and Laiqing Fm. volcanics, the late Miocene-Pliocene Wuyu Fm., and the Pleistocene Dazi Fm. Five sandstone samples from the Mangxiang Fm., Wuyu Fm. and Dazi Fm. and one modern Wuyu reiver sand sample were collected for detrital zircon U-Pb dating using the LA-ICP-MS method. Detrital zircon U-Pb ages in the Mangxiang Fm. show a large cluster at 45-80 Ma; those in the Wuyu Fm. show a large cluster at 8-15 Ma and a subsidiary cluster at 45-70 Ma; those in the Dazi Fm. show three large clusters at 45-65 Ma, 105-150 Ma and 167-238 Ma; and those in modern Wuyu river show a large cluster at 8-15 Ma and a subsidiary cluster at 45-65 Ma (Figure 1). Late Cretaceous-early Eocene zircons in all samples are consistent with the most prominent stage of magmatism of the Gangdese Mountains; the 8-15 Ma zircons in the Wuyu Fm. and modern Wuyu river are consistent with the magmatism of the Laiqing Fm.; and the Triassic-Jurassic zircons in the Dazi Fm. are consistent with the magmatism of the central Lhasa terrane. The results of detrital zircon U-Pb ages and sedimentary facies analyses in the Wuyu Basin indicate that the southern Tibetan Plateau suffered multi-stage tectonism-magmatism since the India-Asia collision: (1) Paleogene Linzizong Group-Rigongla Fm. volcanics; (2) tectonism-magmatism at ~15 Ma ended the lacustrine sediments of the Mangxiang Fm. and resulted in volcanism of the Laiqing Fm.; (3) tectonism at ~8 Ma resulted in the volcanic rocks of the Laiqing Fm. becoming one of the main provenances for the overlying Wuyu Fm.; (4) the Wuyu Basin formed braided river and received sediments from the central Lhasa terrane to its north at ~2.5 Ma. The geomorphic pattern of the southern Tibet has gradually formed since the Quaternary.
MENG Qingquan MENG Qingquan
(1) Data content: This data set is based on the Xiaguiwa landslide in the Sanjiang basin of the Qinghai-Tibet Plateau, reconstructing the bedding slope of the Xiaguiwa landslide; the bedding slope of the Xiaguiwa landslide is used as a reference for shaking table model tests, which is used to design the shaking table model test model and sensor layout diagram for the bedding rock slope, with a weak rock layer in the model slope, and the sensors deployed are acceleration sensors and velocity sensors, and the measured (2) Data source and processing method: The data set is drawn by Guo Mingzhu of Beijing University of Technology using CAD software. (3) The data provide reference for the subsequent shaking table model test implementation.
GUO Mingzhu
(1) Data content: This data set is based on the Xuelongnang landslide in the Sanjiang basin of the Qinghai-Tibet Plateau, and reconstructs the counter-bedding slope before the slide; the counter-bedding slope before the slide is used as a reference for the shaking table model test, which is used to design the shaking table model test model and the sensor layout diagram for the counter-bedding rock slope, and a special joint is set in the model slope, and the deployed sensors are the acceleration sensors and the velocity sensors. (2) Data source and processing method: The data set is drawn by Guo Mingzhu of Beijing University of Technology using CAD software. (3) The data provide reference for the subsequent shaking table model test implementation.
GUO Mingzhu
This data is mainly the data collection of mechanical properties of anti slide pile structure, including bearing capacity, displacement, strain of reinforcement and steel strand, and monitoring of prestress, which is used to analyze various performance indexes of bending and shear resistance of the structure and optimize the structural design; This experiment is mainly completed by scaling the anti slide pile components and loading them with MTS machine for four point bending. The data are collected by static strain acquisition instrument based on force sensor, displacement gauge, strain gauge, optical fiber monitoring and anchor cable dynamometer. Due to the effect of end iron block on the dispersion of prestress transmission, The change of prestress in the whole process of loading has not been completely monitored, and the other data have been analyzed and processed to obtain the corresponding law. The corresponding laws can be obtained by sorting and analyzing the data, which provides some design basis for the application of this kind of prestressed steel strand anti slide pile.
JIANG Qinghui
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn