This dataset includes the schematic diagrams and lithologic histograms of the measured sections of typical unconsolidated sediments in Shigatse, Yarlung Tsangpo River Basin, as well as the statistical table of measured sections. The source data comes from a two-month field measurement in Shigatse, Tibet. 16 sections of unconsolidated sediments were measured, and 128 samples were collected, including 89 cosmic nuclide samples and 39 optically stimulated luminescence samples. 16 schematic diagrams and 38 lithologic histograms were shown. The dataset primarily shows the genetic types of typical unconsolidated sediments in the Shigatse area, such as alluvium, eluvium, diluvium, colluvium, and moraine deposits. The exposed range of measured sediment thickness is about 1.6–70 m, the average thickness is about 29 m, and the horizontal distribution is 41–9059 m. The dataset demonstrates the discrete, porous, sandy and weakly cemented structural characteristics of the unconsolidated sediments with high gravel content (80%–95%), and the main gravel diameter distribution is 0.05–0.1m; sorting and roundness of alluvium are good, while the colluvial materials are poor. Fining-upward trends are commonly seen in most sections, and parallel and tabular cross-bedding are occasionally developed. Untangling the sedimentary characteristics of unconsolidated sediments in the Yarlung Tsangpo River Basin is vital to reveal the storage of fluvial solid matter across the basin, and provide important instructions for disaster warning and prevention and control of related features caused by sliding, unloading, and collapse of the ground surface. It is also of great scientific value to reveal the source-sink process and evolution of fluvial and alluvial systems in the Tibet Plateau and its surrounding basins.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo
Focusing on the objective of estimating the total amount of unconsolidated sediments in the Yarlung Tsangpo River Basin (YTRB), we marked a series of Quaternary sections of unconsolidated sediments in the whole basin to measure their thickness. The dataset presents a collection of field photos of unconsolidated sediments obtained in the scientific expedition in YTRB in 2020. Specifically, this dataset comprises of 16 composite first–class sub basins, from upstream to downstream, including Dangque–Laiwu Tsangpo, Resu–Lierong Tsangpo, Chaiqu–Menqu, Xiongqu–Wengbuqu, Jiada Tsangpo, Pengji Tsangpo–Sakya Chongqu, Duoxiong Tsangpo, Shabu–Danapu, Nianchu River, Xiangqu–Wuyuma, Manqu, Nimuma–Lhasa River, Gonggapu–Luoburongqu, Niyang River, Yigong Tsangpo–Palong Tsangpo, and Xiangjiang River Basin. A total of 584 sites of unconsolidated sediments were marked. The atlas displays different types of unconsolidated sediments, such as alluvium, eluvium, diluvium, colluvium, eolian, lacustrine and moraine deposits, showing their spatial distribution in hillsides, foothills, floodplains, terraces, alluvial–diluvial fans and glacier fronts. With a scale of 1m benchmarking, it shows the significant difference in distribution of thickness. Generally, the thickness of the eluvium on the upper part of the hillside is about 0.3–2.5m, and the thickness of the alluvium is difficult to bottom out. The thickness of diluvium in the gentle area of the piedmont with steep slope is usually between 5 and 10 m, while the thickness of the deposit at the piedmont gully mouth is related to the scale of the pluvial fan, which can reach tens of meters thick and only 3 to 4 meters thin. From the upstream to the downstream, the thickness of alluvium varies greatly. The bedrock in the canyon area is exposed, and the thickness is almost 0. However, the thickness of alluvium in the upstream river valley is large and difficult to see the bottom interface; The maximum thickness of measured moraine deposits can reach more than 20 m. Aeolian deposits are common in the middle and upper reaches, with a wide range of thickness, ranging from a few meters to more than 20 meters. The dataset provides a wide variety of in–suit photos and measurements of unconsolidated sediments covering the whole basin, showing their characteristics of spatial distribution and genetic types, which lays a material foundation and prior knowledge for further detailed characterization and investigation of unconsolidated sediments. This work presents data for estimating the total accumulation of solid debris deposited in the YTRB, and provides a basis for assessing the risk of natural disasters related to unconsolidated sediments and formulating scientific preventive measures.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, HU Taiyu
The Quaternary sediments in the Yarlung Tsangpo River Basin (YTRB) are widely distributed and rich in types. A detailed field geological survey was carried out on the Quaternary sediments in the whole YTRB, including 16 sub-basins. The survey covers Langkazi, Jiangzi, Kangma, Sakya, Razi, Zhongba, Saga, Angren, Xietongmen, Nanmulin, Jiacha, Bomi, Motuo County, Mozhugongka and its surrounding areas. The dataset records the work log, fieldwork photos, and geological profile photos of field geological investigation on different Quaternary sediments in the YTRB. 16 profiles and 40 remote sensing interpretation markers of loose sediments were investigated. It is of great significance to find out the temporal and spatial distribution and change mechanism of Quaternary sediments in YTRB for revealing the evolution of water system, monitoring and protection of plateau ecological environment, soil and water conservation, early warning and prevention of natural disasters, and construction of major infrastructure projects.
LIN Zhipeng, HAN Zhongpeng, WANG Chengshan, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo, HU Taiyu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn