The study of chemical weathering is of great significance to understand how the plateau uplift regulates the mechanism of climate change and the circulation of elements and materials in the sphere. The data set is the seasonal major element concentration and stable isotope data of the river water at the hydrological station of the Yellow River Basin originating from the Qinghai Tibet Plateau. There are two hydrological stations in total: 1. Longmen hydrological station in the middle reaches of the Yellow River is the high-resolution (weekly) sample data collected in 2013, and the element concentrations include K, CA, Na, Mg, SO4, HCO3, Cl, etc. The cation data of collected water samples are tested on ICP-AES of Institute of earth environment, Chinese Academy of Sciences, and the anion data are tested on ion chromatograph (ics1200) of Nanjing Institute of geography and lakes, Chinese Academy of Sciences. The uncertainty is within 5%, and HCO3 is tested by titration. The high-resolution (weekly) Li isotope data of river water was tested in MC-ICP-MS of Institute of earth environment, Chinese Academy of Sciences in 2017, and the test accuracy 2sd is better than 5 ‰; 2. Tangnaihai hydrological station on the Yellow River is the river water (month by month) data set collected from July 2012 to June 2014. The major element concentrations include K, CA, Na, Mg, SO4, HCO3, Cl, etc., and the stable isotope data include s, O and H. The data set can be used to study the modern weathering process under the background of the uplift of the Qinghai Tibet Plateau, and provides the first-hand reliable data for the study of physical erosion and chemical weathering in the basin.
JIN Zhangdong, ZHAO Zhiqi
The dataset includs borehole core lithology, altitude survey, soil thickness and slop measurement, hydrogeological survey, and hydrogeophysical survey in the Maqu catchment of the Yellow River source region in the Tibetan Plateau. The borehole lithology data is from the 2017 drilled borehole ITC_ Maqu_ 1; altitude survey was carried out using RTK in 2019; Soil thickness and slope data were collected by auger and inclinometer in 2018 and 2019; hydrogeological survey includes groundwater table depth measurements in 2018 and 2019, and aquifer test data obtained in 2019; hydrogeological survey includes Magnetic Resonance Sounding (MRS) , Electrical Resistivity Tomography (ERT) , Transient Electromagnetic (TEM) , and magnetic susceptibility measurements. MRS and ERT surveys were conducted in 2018. TEM and magnetic susceptibility measurements were carried out in 2019.
LI Mengna, ZENG Yijian, Maciek W. LUBCZYNSKI, BOB Su, QIAN Hui
These datasets fill the data gap between GRACE and GRACE-FO, they contain CSR RL06 Mascon and JPL RL06 Mascon. They take China as the study area, and the dataset includes "Decimal_time”, "lat”, "lon”, "time”, "time_bounds”, "TWSA_REC" and "Uncertainty" 7 parameters in total. Among them, "Decimal_time” corresponds to decimal time. There are 191 months from April 2002 to December 2019 (163 months for GRACE data, 17 months for GRACE-FO data, and 11 months for the gap between GRACE and GRACE-FO. We have not filled the missing data of individual months between GRACE or GRACE-FO data). "lat" corresponds to the latitude range of the data; "lon" corresponds to the longitude range of the data; "time" corresponds to the cumulative day of the data from January 1, 2002. And "time_bounds" corresponding to the cumulative day at the start date and end date of each month. “TWSA_REC" represents the monthly terrestrial water storage anomalies from April 2002 to December 2019 in China; "Uncertainty" is the uncertainty between the data and CSR RL06 Mascon products. We use GRACE satellite data from CSR GRACE/GRACE-FO RL06 Mascon solutions (version 02), China Gauge-based Daily Precipitation Analysis (CGDPA, version 1.0) data, and CN05.1 temperature dataset. The precipitation reconstruction model was established, and the seasonal and trend terms of CSR RL06 Mascon products were considered to obtain the dataset of terrestrial water storage anomalies in China. The data quality is good as a whole, and the uncertainty of most regions in China is within 5cm. This dataset complements the nearly one-year data gap between GRACE and GRACE-FO satellites, and provides a full time series for long-term land water storage change analysis in China. As the CSR RL06 Mascon product, the average value between 2004.0000 and 2009.999 is deducted from this dataset. Therefore, the 164-174 months (i.e., July 2017 to May 2018) of this dataset can be directly extracted as the estimation of terrestrial water storage anomalies during the gap period. The reconstruction method for the gap of JPL RL06 Mascon is consistent with that of CSR RL06 Mascon.
ZHONG Yulong, FENG Wei, ZHONG Min, MING Zutao
The data set of hydrogeological elements in the typical frozen soil area of Qilian Mountain mainly includes groundwater type, water richness (single water inflow or single spring flow), main rivers and tributaries, spring water (falling springs, spring groups, large springs, Mineral spring distribution), borehole (pressure water borehole, submerged borehole, gravity flow borehole distribution), fault zone (compressive fracture, tensile fracture), angle unconformity boundary, parallel unconformity boundary, west branch of upper Heihe River The boundary of the watershed, the seasonal frozen soil area and the permafrost distinguish the boundary, the distribution of modern glaciers and swamps. This data set of hydrogeological elements can provide background information for the hydrological ecological process and hydrogeological environment in cold regions. This data comes from the vectorization of four 1: 200,000 hydrogeological maps (Qilian, Yenigou, Qilian, and Sunan) and reintegrates the groundwater types. With higher resolution, the data can provide background information for the research on the evolution of water and soil resources and environmental changes in the source area of the Pan-Third Pole River.
SUN Ziyong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn